Combustion Properties

  • Frederick J. Edeskuty
  • Walter F. Stewart
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

Under the right circumstances, almost any property of a substance can relate to its safety. However, there are a number of properties that directly relate to the possibility of a fire or explosion hazard when dealing with combustible cryogens. In this chapter we will discuss these properties as they pertain to hydrogen and methane [including liquefied natural gas (LNG)].

Keywords

Hydrogen Concentration Flame Front Ignition Temperature Combustible Mixture Ignition Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hord, J. (1976). Is Hydrogen Safe?, Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado.Google Scholar
  2. 2.
    Hansel, J. G., Mattern, G. W., and Miller, R. N. (1993). Safety considerations in the design of hydrogen-powered vehicles, Int. J. Hydrogen Energy 18(9), 783.CrossRefGoogle Scholar
  3. 3.
    Chelton, D. B. (1964). Safety in the use of liquid hydrogen, in Technology and Uses of Liquid Hydrogen (R. B. Scott, W. H. Denton, and C. M. Nicholls, eds.), Chap. 10, Pergamon Press, Oxford.Google Scholar
  4. 4.
    Benz, F. J., Bishop, C. V., and Pedley, M. D. (1988). Ignition and Thermal Hazards of Selected Aerospace Fluids, NASA Lyndon B. Johnson Space Center, White Sands Test Facility Report No. RD-WSTF-0001, Las Cruces, New Mexico.Google Scholar
  5. 5.
    Coward, H. F., and Jones, G. W. (1952). Limits of Flammability of Gases and Vapors, U.S. Bureau of Mines Bulletin 503, U.S. Government Printing Office, Washington, D.C.Google Scholar
  6. 6.
    Zabetakis, M. G. (1965). Flammable Characteristics of Combustible Gases and Vapors, U.S. Bureau of Mines Bulletin 627, U.S. Government Printing Office, Washington, D.C.Google Scholar
  7. 7.
    Reider, R., Otway, H., and Knight, H. T. (1965). An unconfined, large-volume hydrogen/air explosion, Pyrodynamics 2, 249.Google Scholar
  8. 8.
    Bowen, T. L. (1975). Investigation of Hazards Associated with Using Hydrogen as a Military Fuel, Naval Ship Research and Development Center Report 4541, Bethesda, Maryland.Google Scholar
  9. 9.
    Sherman, M. P., Baer, M. R., and Griffiths, S. K. (1981). Deliberate ignition and water fogs as H2 control measures for Sequoyah, Proceedings of the Workshop on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, New Mexico, January 26–28, 1981, Vol. IV, pp. 85-124, Sandia National Laboratory Report NUREG/CR-2017, SAND81-0661AN.Google Scholar
  10. 10.
    Torok, R., Siefert, K., and Wachtier, W. (1983). Hydrogen Combustion and Control Studies in Intermediate Scale, Electric Power Research Institute Report EPRINP-2953, Palo Alto, California.Google Scholar
  11. 11.
    Edeskuty, F. J., Haugh, J. J., and Thompson, R. T. (1986). Safety aspects of large-scale combustion of hydrogen, in Hydrogen Energy Progress VI (T. N. Veziroglu, N. Getoff, and P. Weinzierl, eds.), pp. 147–158, Pergamon Press, New York.Google Scholar
  12. 12.
    Cubbage, P. A., and Marshall, M. R. (1972). Pressures generated in combustion chambers by the ignition of air-gas mixtures, in Chemical Engineering Symposium Series, No. 33, pp. 24-31, Institute of Chemical Engineers, London.Google Scholar
  13. 13.
    Sibulkin, M. (1982). Pressure rise generated by combustion of a gas pocket, Combustion Flame 38, 329.CrossRefGoogle Scholar
  14. 14.
    Sherman, M. P., Tieszen, S. R., and Benedick, W. B. (1989). The Effect of Obstacles and Transverse Venting on Flame Accelerations and Transition to Detonation for Hydrogen-Air Mixtures at Large Scale, Report NUREG/CR-5275, SAND85-1264, Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
  15. 15.
    Stamps, D. W, Benedick, W. B., and Tieszen, S. R. (1991). Hydrogen-Air-Diluent Detonation Study for Nuclear Reactor Safety Analysis, Report NUREG/CR-5525, SAND89-2398, Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
  16. 16.
    Lee, J. H., Knystautas, R., Guirao, C. M., Benedick, W. B., and Shepherd, J. E. (1982). Hydrogen-Air Detonations, Proceedings of the Second International Conference on the Impact of Hydrogen on Water Reactor Safety, pp. 961-1005, Sandia National Laboratories Report NUREG/CP-0038, EPRI RP 1032-35, SAND 82-2456, Albuquerque, New Mexico; see also Guirao, C. M., Knystautas, R., and Lee, J. H. (1989). A Summary of Hydrogen-Air Detonation Experiments, Sandia National Laboratories Report NUREG/CR-4961, SAND87-7128.Google Scholar
  17. 17.
    Zabetakis, M. G., Furno, A. L., and Perlee, H. E. (1963). Hazards in Using Liquid Hydrogen in Bubble Chambers, U.S. Bureau of Mines Report of Investigations 6309, U.S. Department of the Interior, Bureau of Mines, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frederick J. Edeskuty
    • 1
  • Walter F. Stewart
    • 1
  1. 1.Los Alamos National Laboratory (Retired)Los AlamosUSA

Personalised recommendations