Prospects for Comparative Genome Analyses Among Mammals

  • Leslie A. Lyons
  • Stephen J. O’Brien
Part of the Stadler Genetics Symposia Series book series (SGSS)


The discovery of hypervariable microsatellite markers and the technical advances of marker typing has facilitated efforts towards the construction of genetic linkage maps in several diverse vertebrate species. These mapping projects have advanced the exploration of each organism’s genome and its biology. But less effort has been focused on the mapping of coding genes, genetic markers which allow comparisons of genome organization across species. The establishment of universal Type I (coding gene) genetic markers, which can be mapped in all species, will allow true comparisons of genome organization across species and will provide the framework for comparative genetic research (O’Brien, 1991). Comparative genetics allows the gene poor species to consider the information of gene rich species, exponentially increasing the perspective available for disease and genetic trait analyses. In developing the genetic map of the cat (O’Brien and Nash; Nash and O’Brien; Gilbert et al., 1988; O’Brien et al., 1988), we have focused on the mapping of Type I markers in order to capture the information locked in the genome of other species and to assist the use of the feline genome in evolutionary and inherited disease research (O’Brien et al., 1993).


Polycystic Kidney Disease Feline Immunodeficiency Virus Feline Infectious Peritonitis Gene Rich Species Feline Infectious Peritonitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnett, K.C., and Curtis, R., 1985, Autosomal dominant progressive retinal atrophy in Abyssinian cats, J Heredity 76: 168.Google Scholar
  2. Biller, D.S., Chew, D.J., and DiBartola, S.P., 1990, Polycystic kidney disease in a family of Persian cats, JAVMA 196: 1288.PubMedGoogle Scholar
  3. Bonhomme, F., Martin, S., and Thaler, L, 1978, Hybridation en laboratoire de Mus musculus L et Mus spretus Lastaste, Experientia 34: 1140.PubMedCrossRefGoogle Scholar
  4. Chandley, A.C., Jones, R.C., Dott, H.M., Allen, W.R., and Short, R.V., 1974, Meiosis in interspecific equine hybrids. I The male mule (Equus asinus x E. caballus) and hinny (E. caballus x E. asinus), Cytogenet. Cell Genet. 13: 330.CrossRefGoogle Scholar
  5. Collier, G.E., and O’Brien, S.J., 1985, A molecular phylogeny of Felidae: Immunological distance, Evolution 39: 473.CrossRefGoogle Scholar
  6. Copeland, N.G., Jenkins, N.A., Gilbert, D.J., Eppig, J.T., Maltais, LJ., Miller, J.C., Dietrich, W.F., Weaver, A., Lincoln, S.E., Steen, R.G., Stein, L.D., Nadeau, J.H., and Lander, E.S., 1993, A genetic linkage map of the mouse: Current applications and future prospects, Science 262: 57.PubMedCrossRefGoogle Scholar
  7. Gilbert, D.A., O’Brien, J.S., and O’Brien, S.J., 1988, Chromosomal mapping of lysosomal enzyme structural genes in the domestic cat. Genomics 2: 329.PubMedCrossRefGoogle Scholar
  8. Haldane, J.B.S., 1922, Sex ratio and nisexual sterility in hybrid animals, J. Genetics 12: 101.CrossRefGoogle Scholar
  9. Hardy, W.D., Essex, M., and McClelland, A.J., eds., 1908, Feline Leukemia Virus, Elsevier/North Holland, New York, pp. 586.Google Scholar
  10. Lyons, L.A., Menotti-Raymond, M., and O’Brien, S.J., 1994, Comparative Genomics: The next generation, Animal Biotechnology 5: 103.CrossRefGoogle Scholar
  11. Lyons, LA., Menotti-Raymond, M., and O’Brien, S.J., 1994, Comparative Genomics: The next generation, Animal Biotechnology 5: 103.CrossRefGoogle Scholar
  12. Lyons, LA., Laughlin, T.F., Copeland, N.G., Jenkins, N.A., Womack, J.E, and O’Brien, S.J., 1996, Comparative anchor tagged sites for integrative mapping of mammalian genomes, (In preparation).Google Scholar
  13. Lyons, LA., Brown, J.L, Munsen, L, Tuthill, D., Howard, J.G., Wildt, D.E, and O’Brien, S.J., 1996, Reproductive assessment of sterile male F1 domestic cat x leopard cat hybrids (Felis catus x Prionailurus bengalensis,(In preparation).Google Scholar
  14. Marshall Graves, J.A., Wakefield, M.J., Peters, J., Searle, A.G., Womack, J.E, and O’Brien, S.J., 1995, Report of the committee on comparative gene mapping, in:“Human Gene Mapping, 1994: A Compendium”, Cuticchia, A.J. ed., Johns Hopkins University Press, Baltimore, pp. 962.Google Scholar
  15. Menotti-Raymond, M.A., and O’Brien, S.J., 1995, Evolutionary conservation of ten microsatellite loci in four species of Felidae, J. Hered. 86: 319.PubMedGoogle Scholar
  16. Modi, W.S., and O’Brien, S.J., 1988, Quantitative cladistic analyses of chromosomal banding data among species in three orders of mammals: Hominoid primates, felids and arvicolid rodents, in: Chromosome Structure and Function”, Gustafson, J. P. and Appels, R eds., Plenum Press, New York pp. 215.Google Scholar
  17. Nadeau, J.H., Davisson, M.T., Doolittle, D.P., Grant, P., Hillyard, A.L, Kosowsky, M., and Roderick, T.H., 1991, Comparative map for mice and humans, Mamm. Genome 1: S461.PubMedCrossRefGoogle Scholar
  18. Nash, W.G., and O’Brien, S.J., 1982, Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: Carnivores and primates, Proc. Natl. Acad. Sci., USA 79: 6631.PubMedCrossRefGoogle Scholar
  19. Nicholas, F., 1996, Online Mendelian Inheritance in Animals (OMIA), Scholar
  20. O’Brien, S. J., 1986, Molecular genetics in the domestic cat and its relatives, Trends Genet. 2: 137.CrossRefGoogle Scholar
  21. O’Brien, S.J., 1991, Mammalian genome mapping: Lessons and prospects, Current Opinion in Genetics and Development 1: 105.PubMedCrossRefGoogle Scholar
  22. O’Brien, S.J., and Nash, W.G., 1982, Genetic mapping in mammals: Chromosome map of the domestic cat, Science 216: 257.PubMedCrossRefGoogle Scholar
  23. O’Brien, S.J., Seuanez, H.N., and Womack, J.E, 1988, Mammalian genome organization: An evolutionary view, Annual Review of Genetics, 22: 323.PubMedCrossRefGoogle Scholar
  24. O’Brien, S.J., Womack, J.E., Lyons, LA., Moore, K.J., Jenkins, N.A., and Copeland, N.G., 1993, Anchored reference loci for comparative genome mapping in mammals, Nature Genet. 3: 103.PubMedCrossRefGoogle Scholar
  25. Pedersen, N.C., 1987, Coronavirus diseases (coronavirus enteritis, feline infectious peritonitis), in:“ Diseases of the Cat”, Holzworth, J. ed., W.B. Saunders, Philadelphia, pp. 193.Google Scholar
  26. Pedersen, N.C., and Floyd, K., 1985, Experimental studies with three new strains of feline infectious peritonitis virus: FIPV-UCD2, FIPV-UCD3 and FIPVUCD4, Comp. Cont. Educ. Prac. Vet. 7:1001.Google Scholar
  27. Reeves, R.H., and O’Brien, S.J., 1984, Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences, J. Virol. 52: 164.PubMedGoogle Scholar
  28. The International Polycystic Kidney Disease Consortium, 1995, Polycystic kidney disease: The complete structure of the PKD1 gene and its protein, Cell 81: 289.Google Scholar
  29. Wayne, R.K., Benveniste, RE., Janczewski, D.N., and O’Brien, S.J., 1989, Molecular and biochemical evolution of the Carnivora, in: “Carnivore Behavior, Ecology and Evolution”, Gittleman, J. L ed., New York, Cornell University, pp. 465.CrossRefGoogle Scholar
  30. Wurster-Hill, D.H., and Centerwall, W.R, 1982, The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids, Cytogenet. Cell Genet. 34: 178.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Leslie A. Lyons
    • 1
  • Stephen J. O’Brien
    • 1
  1. 1.Laboratory of Viral Carcinogenesis Frederick Cancer Research and Development CenterNational Cancer InstituteFrederickUSA

Personalised recommendations