A Pairing-Looping Model for Position-Effect Variegation in Drosophila

  • Steven Henikoff
Part of the Stadler Genetics Symposia Series book series (SGSS)

Abstract

L. J. Stadler’s critical review, “The Gene” (Stadler, 1954), was published shortly after his death in 1954, when genes were defined abstractly by mutation, not molecularly by sequence, as they are today. In Stadler’s time, position-effect variegation (PEV) represented a challenge to any simple view of the gene, because a PEV mutation could act to silence multiple linked genes, a feature commonly referred to as “spreading”. One extreme view cited by Stadler was Goldschmidt’s contention that PEV reveals that genes do not exist, at least not as discrete entities. Whereas such uncertainties concerning the existence and nature of the gene were soon cleared up during the molecular biology revolution, the problem of spreading seen with PEV remains: how can a single lesion affect multiple discrete genes in a region?

Keywords

Polytene Chromosome Heterochromatin Formation Repeat Array White Gene Position Effect Variegation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aparicio, O.M., and Gottschling, D.E, 1994, Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way, Genes and Dev. 8: 1133.PubMedCrossRefGoogle Scholar
  2. Ashburner, M., 1980, Some aspects of the structure and function of the polytene chromosomes of the Diptera. in: “Insect cytogenetics. Tenth Symposium of the Royal Entomological Society,” RL Blackman, G.M. Hewitt and M. Ashburner eds., pp. 65–84.Google Scholar
  3. Baker, W.K., 1968, Position-effect variegation, Adv. Genet. 14: 133.PubMedCrossRefGoogle Scholar
  4. Bates, G., and Lehrach, H., 1994, Trinucleotide repeat expansions and human genetic disease, Bioessays 16: 277.PubMedCrossRefGoogle Scholar
  5. Bayne, R.A.L, Broccoli, D., Taggart, M.H., Thomson, EJ., Farr, C.J., and Cooke, H.J., 1994, Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing, Hum. Mol. Genet. 3: 539.PubMedCrossRefGoogle Scholar
  6. Belling, J., 1933, Crossing-over and gene rearrangement in flowering plants, Genetics 18: 388.PubMedGoogle Scholar
  7. Belyaeva, E.S., and Zhimulev, I.F., 1991, Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continuous and discontinuous compaction of chromosomal material as a result of position effect variegation, Chromosoma 100: 453.PubMedCrossRefGoogle Scholar
  8. Belyaeva, E.S., Demakova, O.V., Umbetova, G.H., and Zhimulev, I.F., 1993, Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatin-associated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation, Chromosoma 102: 583.PubMedCrossRefGoogle Scholar
  9. Bonifer, C., Hecht, A., Saueressig, H., Winter, D.M., and Sippel, A.E, 1991, Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci, J. Cell. Biochem. 47: 99.PubMedCrossRefGoogle Scholar
  10. Bonifer, C Yannoutsos, N., Kruger, G., Grosveld, F., and Sippel, A.E, 1994, Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice, Nucleic Acids Res. 22: 4202.CrossRefGoogle Scholar
  11. Charlesworth, B., Jarne, P., and Assimacopoulous, S., 1994, The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. 3. Element abundances in heterochromatin, Genet. Res. 64: 183.PubMedCrossRefGoogle Scholar
  12. Chung, J.H., Whiteley, M., and Felsenfeld, G., 1993, A 5’ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila, Cell 74: 505.PubMedCrossRefGoogle Scholar
  13. Demerec, M., and Slizynska, H., 1937, Mottled white 258–18 of Drosophila melanogaster, Genetics 22: 641.PubMedGoogle Scholar
  14. Devlin, RH., Bingham, B., and Wakimoto, B., 1990, The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster, Genetics 125: 129.PubMedGoogle Scholar
  15. Dorer, D.R., and Henikoff, S., 1994, Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila, Cell 77: 993.PubMedCrossRefGoogle Scholar
  16. Dorn, R., Krauss, V., Reuter, G., and Saumweber, H., 1993, The enhancer of position-effect variegation of Drosophila, E(var)3–93Google Scholar
  17. D, Codes for a chromatin protein containing a conserved domain common to several transcriptional regulators, Proc. Natl. Acad. Sci. USA 90: 1 1376.Google Scholar
  18. Dreesen, T.D., Henikoff, S., and Loughney, K., 1991, A pairing-sensitive element that mediates trans-inactivation is associated with the Drosophila brown gene, Genes and Dev. 5: 331.PubMedCrossRefGoogle Scholar
  19. Ebert, D.F., Duyf, B.J., and Hilliker, A.J., 1993, The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster, Genetics 134: 277.Google Scholar
  20. Eissenberg, J.C., 1989, Position effect variegation in Drosophila: Towards a genetics of chromatin assembly, Bioessays 11: 14.PubMedCrossRefGoogle Scholar
  21. Eissenberg, J.C., and Elgin, S.C.R, 1991, Boundary functions in the control of gene expression, Trends Genet. 7: 335.PubMedGoogle Scholar
  22. Eissenberg, J.C., Morris, G.D., Reuter, G., and Hartnett, T., 1992, The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation, Genetics 131: 345.PubMedGoogle Scholar
  23. Ephrussi, B., and Sutton, E, 1944, A reconsideration of the mechanism of position effect, Proc. Natl. Acad. Sci. USA 30: 183.PubMedCrossRefGoogle Scholar
  24. Farkas, G., Gausz, J., Galloni, M., Reuter, G., Gyurkovics, H., and Karch, F., 1994, The Trithorax-like gene encodes the Drosophila GAGA factor, Nature 371: 806.PubMedCrossRefGoogle Scholar
  25. Fauvarque, M.-O., and Dura, J.-M., 1993, polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila, Genes and Dev. 7: 1508.Google Scholar
  26. Finnegan, D.J., and Fawcett, D.H., 1986, Transposable elements in Drosophila melanogaster, Oxfd. Surv. Eukaryot. Genes 3: 1.Google Scholar
  27. Flavell, RB., 1994, Inactivation of gene expression in plants as a consequence of specific sequence duplication, Proc. Natl. Acad. Sci. USA 91: 3490.PubMedCrossRefGoogle Scholar
  28. Garzino, V., Pereira, A., Laurenti, P., Graba, Y., Levis, R.W., Le Parco, Y., and Pradel, J., 1992, Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila, EMBO J. 11: 4471.Google Scholar
  29. Glaser, R.L, Karpen, G.H., and Spradling, A.C., 1992, Replication forks are not found in a Drosophila minichromosome demonstrating a gradient of polytenization, Chromosoma 102: 15.PubMedCrossRefGoogle Scholar
  30. Glover, D.M., Leibowitz, M.H., McLean, D.A., and Parry, H., 1995, Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles, Cell 81: 95.PubMedCrossRefGoogle Scholar
  31. Grigliatti, T., 1991, Position-effect variegation-An assay for nonhis tone chromosomal proteins and chromatin assembly and modifying factors. in: “Functional organization of the nucleus: A laboratory guide,” B.A. Hamkalo and S.C.R. Elgin eds., Academic Press, San Diego, pp. 587–627.CrossRefGoogle Scholar
  32. Gubb, D., Ashburner, M., Roote, J., and Davis, T., 1990, A novel transvection phenomenon affecting the white gene of Drosophila melanogaster, Genetics 126: 167.PubMedGoogle Scholar
  33. Hammond, M.P., and Laird, C.D., 1985a, Chromosome structure and DNA replication in nurse and follicle cells of Drosophila melanogaster, Chromosoma 91: 267.PubMedCrossRefGoogle Scholar
  34. Hammond, M.P., and Laird, C.D., 1985b, Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster, Chromosoma 91: 279.PubMedCrossRefGoogle Scholar
  35. Hansen, RS., Canfield, T.K., Lamb, M.M., Gartler, S.M., and Laird, C.D., 1993, Association of fragile X syndrome with delayed replication of the FMR1 gene, Cell 73: 1403.PubMedCrossRefGoogle Scholar
  36. Hartmann-Goldstein, I.J., 1967, On the relationship between heterochromatization and variegation in Drosophila with special reference to temperature-sensitive periods, Genet. Res. 10: 143.PubMedCrossRefGoogle Scholar
  37. Hayashi, S., Ruddell, A., Sinclair, D., and Grigliatti, T., 1990, Chromosomal structure is altered by mutations that suppress or enhance position effect variegation, Chromosoma 99: 391.PubMedCrossRefGoogle Scholar
  38. Hearn, M.G., Hedrick, A., Grigliatti, T.A., and Wakimoto, B.T., 1991, The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster, Genetics 128: 785.PubMedGoogle Scholar
  39. Heitz, E, 1929, Heterochromatin, Chromocentren, Chromomeren, Ber. Dtsch. bot. Ges. 47: 274.Google Scholar
  40. Henderson, D.S., Banga, S.S., Grigliatti, T.A., and Boyd, J.B., 1994, Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA, EMBO J. 13: 1450.PubMedGoogle Scholar
  41. Henikoff, S., 1979, Position effects and variegation enhancers in an autosomal region of Drosophila melanogaster, Genetics 93: 105.PubMedGoogle Scholar
  42. Henikoff, S., 1981, Position-effect variegation and chromosome structure of a heat shock puff in Drosophila, Chromosoma 83: 381.PubMedCrossRefGoogle Scholar
  43. Henikoff, S. 1994, A reconsideration of the mechanism of position effect, Genetics 138: 1.PubMedGoogle Scholar
  44. Henikoff, S., 1995, Gene silencing in Drosophila. in: “Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes,” P. Meyer eds., Current Topics in Microbiology and Immunology., vol. 197. Springer-Verlag, Berlin, pp. 193–208.CrossRefGoogle Scholar
  45. Henikoff, S., and Dreesen, T.D., 1989, Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence, Proc. Natl. Acad. Sci. USA 86: 6704.PubMedCrossRefGoogle Scholar
  46. Henikoff, S., Jackson, J.M., and Talbert, P.B., 1995, Distance and pairing effects on the brownDominant heterochromatic element in Drosophila, Genetics 140: 1007.PubMedGoogle Scholar
  47. Hiraoka, Y., Dernburg, A.S., Parmelee,S.J., Rykowski,M.C., Agard,D.A., and Sedat,J.W., 1993, The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis, J. Cell Biol. 120: 591.Google Scholar
  48. Hochstrasser, M., and Sedat, J.W.; 1987, Three-dimensional organization of Drosophila melanogaster interphase nuclei. I Tissue-specific aspects of polytene nuclear architecture, J. Cell Biol. 104: 1455.PubMedCrossRefGoogle Scholar
  49. Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H., and Sedat, J.W., 1986, Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster, J. Cell Biol. 102: 112.PubMedCrossRefGoogle Scholar
  50. Horowitz, R.A., Agard, D.A., Sedat, J.W., and Woodcock, C.L, 1994, The three- dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon, J. Cell Biol. 125: 1.PubMedCrossRefGoogle Scholar
  51. Huber, M.C., Bosch, F.X., Sippel, A.E., and Bonifer, C., 1994, Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation, Nucleic Acids Res. 22: 4195.PubMedCrossRefGoogle Scholar
  52. James, T.C., and Elgin, S.C.R, 1986, Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila and its gene, Mol. Cell. Biology 6: 3862.Google Scholar
  53. Jorgensen, R.A., 1995, Cosuppression, flower color patterns, and metastable gene expression states, Science 268: 686.PubMedCrossRefGoogle Scholar
  54. Karpen, G.H., 1994, Position-effect variegation and the new biology of heterochromatin, Curr. Op. Genet. Dey. 4: 281.CrossRefGoogle Scholar
  55. Karpen, G., and Spradling, A.C., 1990, Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila, Cell 63: 97.PubMedCrossRefGoogle Scholar
  56. Karpen, G.H., and Spradling, A.C., 1992, Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis, Genetics 132: 737.PubMedGoogle Scholar
  57. Kellum, R., and Schedi, P., 1991, A position-effect assay for boundaries of higher order chromosomal domains, Cell 64: 941.PubMedCrossRefGoogle Scholar
  58. Kleckner, N., and Weiner, B.M., 1993, Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic, and premeiotic cells, Cold Spring Harbor Symp. Quant. Biol. 58: 553.PubMedCrossRefGoogle Scholar
  59. Kopczynski, C.C., and Muskavitch, M.A.T., 1992, Introns excised from the Delta primary transcript are localized near sites of Delta transcription, J. Cell Biol. 119: 503.PubMedCrossRefGoogle Scholar
  60. Laird, C.D., 1987, Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation, Genetics 117: 587.PubMedGoogle Scholar
  61. Laird, C.D., Chooi, W.Y., Cohen, E.H., Dickson, E, Hutchinson, N., and Turner, S.H., 1973, Organization and transcription of DNA in chromosomes and mitochondria of Drosophila, Cold Spring Harbor Symp. Quant. Biol. 38: 311.CrossRefGoogle Scholar
  62. Iamb, M.M., and Laird, C.D., 1987, Three euchromatic DNA sequences under-replicated in polytene chromosomes of Drosophila are localized in constrictions and ectopic fibers, Chromosoma 95: 227.CrossRefGoogle Scholar
  63. Leach, D.R.F., 1994, Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair, Bioessays 16: 893.PubMedCrossRefGoogle Scholar
  64. Leuba, S.H., Yang, G., Robert, C., Samori, B., van Holde, K., Zlatanova, J., and. Bustamante, C., 1994, Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy, Proc. Natl. Acad. Sci. USA 91: 1 1621.Google Scholar
  65. Levis, RW., Ganesan, R., Houtchens, K., Tolar, LA., and Sheen, F.-m, 1993, Transposons in place of telomeric repeats at a Drosophila telomere, Cell 75: 1083.PubMedCrossRefGoogle Scholar
  66. Lewis, E.B., 1950, The phenomenon of position effect, Adv. Genet. 3: 73.PubMedCrossRefGoogle Scholar
  67. Lindsley, D.L, and Zimm, G.G., 1992, “The genome of Drosophila melanogaster”. Academic Press, San Diego.Google Scholar
  68. Locke, J., 1994, Examination of DNA sequences undergoing chromatin conformation changes at a variegating breakpoint in Drosophila melanogaster, Genetica 92: 33.CrossRefGoogle Scholar
  69. Locke, J., Kotarski, M.A., and Tartof, K.D., 1988, Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect, Genetics 120: 181.PubMedGoogle Scholar
  70. Lohe, A., Hilliker, A.J., and Roberts, P.A., 1993, Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster, Genetics 134: 1149.PubMedGoogle Scholar
  71. Manuelidis, L, 1991, Heterochromatic features of an 11-megabase transgene in brain cells, Proc. Natl. Acad. Sci. USA 88: 1049.PubMedCrossRefGoogle Scholar
  72. Martin-Morris, LE, and Henikoff, S., 1995, Conservation of brown gene trans-inactivation in Drosophila, Genetics 140: 193.PubMedGoogle Scholar
  73. Martin-Morris, LE., Loughney, K., Kershisnik, EO., Poortinga, G., and Henikoff, S., 1993, Characterization of sequences responsible for trans-inactivation of the Drosophila brown gene, Cold Spring Harbor Symp. Quant. Biol. 58: 577.PubMedCrossRefGoogle Scholar
  74. Matzke, M.A., Matzke, A.J.M., and Mittelsten-Scheid, 0., 1994, Inactivation of repeated genes–DNA-DNA interaction? in: “Homologous recombination in plants,” J. Paszkowski ed., Kluwer, Amsterdam, pp. 271–307.Google Scholar
  75. Metz, C.W., 1916, Chromosome studies on the Diptera II. The paired association of chromosomes in the diptera, and its significance, J. Exp. Zool. 21: 213.CrossRefGoogle Scholar
  76. Michailidis, J., Murray, N.D., and Graves, J.A.M., 1988, A correlation between development time and variegated position effect in Drosophila melanogaster, Genet. Res. 52: 119.CrossRefGoogle Scholar
  77. Miklos, G.LG., Yamamoto, M.-T., Davies, J., and Pirrotta, V., 1988, Microscloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 85: 2051.PubMedCrossRefGoogle Scholar
  78. Modollel, J., Bender, W., and Meselson, M., 1983, Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element, Proc. Nad. Acad. Sci. USA 80: 1678.Google Scholar
  79. Moehrle, A., and Paro, R, 1994, Spreading the silence: epigenetic transcriptional regulation during Drosophila development, Dev. Genet. 15: 478.PubMedCrossRefGoogle Scholar
  80. Moore, G.D., Sinclair, D.A., and Grigliatti, T.A., 1983, Histone gene multiplicity and position effect variegation in Drosophila melanogaster, Genetics 105: 327.PubMedGoogle Scholar
  81. Mottus, R., Reeves, R, and Grigliatti, T.A., 1980, Butyrate suppression of position-effect variegation in Drosophila melanogaster, Mol. Gen. Genet. 178: 465.PubMedCrossRefGoogle Scholar
  82. Muller, H.J., 1930, Types of visible variations induced by X-rays in Drosophila, J. Genet. 22: 299.CrossRefGoogle Scholar
  83. Muller, H.J., 1932, Further studies on the nature and causes of gene mutations, Proc. Intl. Congr. of Genet. 1: 213.Google Scholar
  84. O’Brien, T., Wilkins, RC., Giardina, C., and Lis, J.T., 1995, Distribution of GAGA protein on Drosophila genes in vivo, Genes and Dey. 9: 1098.CrossRefGoogle Scholar
  85. Painter, T.S., 1934, Salivary chromosomes and the attack on the gene, J. Hered. 25: 464.Google Scholar
  86. Palmiter, RD., and Brinster, R.L, 1986, Germ-line transformation of mice, Ann. Rev. Genet. 20: 465.PubMedCrossRefGoogle Scholar
  87. Pardue, M.L, 1986, In situ hybridization to DNA of chromosomes and nuclei. in: “Drosophila, a practical approach,” D.B. Roberts ed, IRL Press, Oxford, pp. 111–137.Google Scholar
  88. Paro, R., and Hogness, D.S., 1991, The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila, Proc. Natl. Acad. Sci. USA 88: 263.PubMedCrossRefGoogle Scholar
  89. Pirrotta, V., and Rastelli, L, 1994, white gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila, Bioessays 16: 549.Google Scholar
  90. Pontecorvo, G., 1944, Structure of heterochromatin, Nature 153: 365.CrossRefGoogle Scholar
  91. Powers, J.A., and Eissenberg, J.C., 1993, Overlapping domains of the heterochromatin-associated protein HP1 mediate nuclear localization and heterochromatin binding, J. Cell Biol. 120: 291.PubMedCrossRefGoogle Scholar
  92. Ptashne, M., 1986, Gene regulation by proteins acting nearby and at a distance, Nature 322: 697.PubMedCrossRefGoogle Scholar
  93. Raff, J.W., Kellum, R., and Alberts, B., 1994, The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin thoughout the cell cycle, EMBO J. 13: 5977.PubMedGoogle Scholar
  94. Reuter, G., and Spierer, P., 1992, Position effect variegation and chromatin proteins, Bioessays 14: 605.PubMedCrossRefGoogle Scholar
  95. Reuter, G., and Wolff, I., 1981, Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster, Mol. Gen. Genet. 182: 516.PubMedCrossRefGoogle Scholar
  96. Reuter, G., Werner, W., and Hoffmann, H.J., 1982, Mutants affecting position-effect heterochromatinization in Drosophila melanogaster, Chromosoma 85: 539.PubMedCrossRefGoogle Scholar
  97. Reuter, G., Wolff, I., and Friede, B., 1985, Functional properties of the heterochromatic sequences inducing wm4 position-effect variegation in Drosophila melanogaster, Chromosoma 93: 132.CrossRefGoogle Scholar
  98. Reuter, G., Giarre, M., Farah, J., Gausz, J., Spierer, A., and Spierer, P., 1990, Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein, Nature 344: 219.PubMedCrossRefGoogle Scholar
  99. Roseman, R.R., Pirrotta, V., and Geyer, P.K., 1993, The su(HW) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects, EMBO J. 12: 435.PubMedGoogle Scholar
  100. Rossignol, J.-L, and Faugeron, G., 1994, Gene inactivation triggered by recognition between DNA repeats, Experientia 50: 307.PubMedCrossRefGoogle Scholar
  101. Rudkin, G.T., 1969, Non-replicating DNA in Drosophila, Genetics (suppl.) 61: 227.Google Scholar
  102. Rushlow, C.A., Bender, W., and Chovnick, A., 1984, Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster, Genetics 108: 603.PubMedGoogle Scholar
  103. Sabl, J.F., and Henikoff, S., 1995, Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila, Genetics (accepted for publication).Google Scholar
  104. Schlossherr, J., Eggert, H., Paro, R, Cremer, S., and Jack, R.S., 1994, Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessiblity of the chromatin fibre, Mol. Gen. Genet. 243: 453.PubMedGoogle Scholar
  105. Schultz, J., 1936, Variegation in Drosophila and the inert heterochromatic regions, Proc. Natl. Acad. Sci. USA 22: 27.PubMedCrossRefGoogle Scholar
  106. Sinclair, D.A., Ruddell, A.A., Brock, J.K., Clegg, N.J., Lloyd, V.K., and Grigliatti, T.A., 1992, A cytogenetic and genetic characterization of a group of closely linked second chromosome mutations that suppress position-effect variegation in Drosophila melanogaster, Genetics 130: 333.PubMedGoogle Scholar
  107. Slatis, H.M., 1955, Position effects at the brown locus in Drosophila melanogaster, Genetics 40: 5.PubMedGoogle Scholar
  108. Spofford, J.B., 1976, Position-effect variegation in Drosophila. in: “Genetics and Biology of Drosophila,” M. Ashburner, and E Novitski eds, vol. lc. Academic Press, London, pp. 955–1019.Google Scholar
  109. Spradling, A.C., 1993, Position effect variegation and genomic instability, Cold Spring Harbor Symp. Quant. Biol. 58: 585.PubMedCrossRefGoogle Scholar
  110. Spradling, A.C., and Karpen, G.H., 1990, Sixty years of mystery, Genetics 126: 779.PubMedGoogle Scholar
  111. Spradling, A.C., Karpen, G., Glaser, R., and Zhang, P., 1993, Evolutionary conservation of developmental mechanisms: DNA elimination in Drosophila. in: “Evolutionary conservation of developmental mechanisms,” A.C. Spradling ed., Wiley-Liss, New York, pp. 39–53.Google Scholar
  112. Stadler, L.J., 1954, The gene, Science. 120: 811.PubMedCrossRefGoogle Scholar
  113. Steller, H., and Pirrotta, V., 1985, A transposable P vector that confers selectable G418 resistance to Drosophila larvae, EMBO J. 4: 167.PubMedGoogle Scholar
  114. Stevens, N.M., 1908, A study of the germ cells of certain Diptera with reference to the heterochromosomes and the phenomena of synapsis, J. Fxp. Zool. 5: 359.CrossRefGoogle Scholar
  115. Stief, A., Winter, D.M., Stratling, W.H., and Sippel, A.E., 1989, A nuclear DNA attachment element mediates elevated and position-independent gene activity, Nature 341: 343.PubMedCrossRefGoogle Scholar
  116. Talbert, P.B., LeCiel, C.D.S., and Henikoff, S., 1994, Modification of the Drosophila heterochromatic mutation brownDominant by linkage alterations, Genetics 136: 559.PubMedGoogle Scholar
  117. Tartof, K.D., 1994, Position effect variegation in yeast, Bioessays 16: 713.PubMedCrossRefGoogle Scholar
  118. Tartof, K.D., Hobbs, C., and Jones, M., 1984, A structural basis for variegating position effects, Cell 37: 869.PubMedCrossRefGoogle Scholar
  119. Tartof, K.D., Bishop, C., Jones, M., Hobbs, C.A., and Locke, J., 1989, Towards an understanding of position effect variegation, Dev. Genet. 10: 162.PubMedCrossRefGoogle Scholar
  120. Temin, H., 1993, Retrovirus variation and reverse transcription: Abnormal strand transfers result in retrovirus genetic variation, Proc. Natl. Acad. Sci. USA 90: 6900.PubMedCrossRefGoogle Scholar
  121. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R, Korge, G., and Reuter, G., 1994, The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes, EMBO J. 13: 3822.PubMedGoogle Scholar
  122. Tsukiyama, T., Becker, P.B., and Wu, C., 1994, ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor, Nature 367: 525.PubMedCrossRefGoogle Scholar
  123. Udvardy, A., Maine, E, and Schedi, P., 1985, The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains, J. Mol. Biol. 185: 341.PubMedCrossRefGoogle Scholar
  124. Umbetova, G.H., Belyaeva, ES., Baricheva, EM., and Zhimulev, I.F., 1991, Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogaster IV. Underreplication of chromosomal material as a result of gene inactivation, Chromosoma 101: 55.PubMedCrossRefGoogle Scholar
  125. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J., and Razin, A., 1982, The absence of detectable methylated bases in Drosophila melanogaster DNA, FEBS Lett. 146: 148.PubMedCrossRefGoogle Scholar
  126. Vazquez, J., and Schedl, P., 1994, Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions, EMBO J. 13: 5984.PubMedGoogle Scholar
  127. Wakimoto, B., and Hearn, M., 1990, The effects of chromosome rearrangements on the expression of heterochromatic genes in Chromosome 2L of Drosophila melanogaster, Genetics 125: 141.PubMedGoogle Scholar
  128. Weiner, B.M., and Kleckner, N., 1994, Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast, Cell 77: 977.PubMedCrossRefGoogle Scholar
  129. Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193: 848.PubMedCrossRefGoogle Scholar
  130. Willems, P.J., 1994, Dynamic mutations hit double figures, Nature Gen. 8: 213.CrossRefGoogle Scholar
  131. Wines, D.R., Talbert, P.B., Clark, D.V., and Henikoff, S., 1995, Introduction of a DNA methyltransferase in Drosophila to probe chromatin structure in vivoChromosoma (in press).Google Scholar
  132. Wolfe, A.P., 1992, Chromatin: Structure and function. Academic Press, San Diego.Google Scholar
  133. Woodcock, C. Grigoryev, S.A., Horowitz, R.A., and Whitaker, N., 1993, A folding model for chromatin that incorporates linker DNA variability produces fibers that mimic the native structures, Proc. Natl. Acad. Sci. USA 87:7603.Google Scholar
  134. Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G., 1989, The genetics of position-effect variegation modifying loci in Drosophila meianogaster, Mol. Gen. Genet. 217: 520.Google Scholar
  135. Zhang, P., and Spradling, A.C., 1995, The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin, Genetics 139: 659.PubMedGoogle Scholar
  136. Zuckerkandl, E, 1974, A possible role of “inert” heterochromatin in cell differentiation. Action of and competition for “locking” molecules, Biochimie 56: 937.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Steven Henikoff
    • 1
    • 2
  1. 1.Howard Hughes Medical Institute and Basic Sciences DivisionUSA
  2. 2.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations