Density-Functional Theory of Surface Diffusion and Epitaxial Growth of Metals

  • C. Ratsch
  • P. Ruggerone
  • M. Scheffler
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

This paper gives a summary of basic concepts of density-functional theory (DFT) and its use in state-of-the-art computations of complex processes in condensed matter physics and materials science. In particular, we discuss how microscopic growth parameters can be determined by DFT and how, on this basis, macroscopic phenomena can be described. To reach the time and length scales of realistic growth conditions, DFT results are complemented by kinetic Monte Carlo simulations.

Keywords

Energy Barrier Diffusion Barrier Generalize Gradient Approximation Effective Medium Theory Bridge Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ruggerone, C. Ratsch, and M. Scheffler, in The Chemical Physics of Solid Surfaces vol. 8, eds. D.A. King, D.P. Woodruff (Elsevier Science, Amsterdam, 1997), in press.Google Scholar
  2. 2.
    A. Kley and M. Scheffler, in The Physics of Semiconductors, Eds. M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), 1031.Google Scholar
  3. 3.
    D.W. Bassett and P.R. Webber, Surf. Sci. 70, 520 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Wrigley and G. Ehrlich, Phys. Rev. Lett. 44, 661 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    G.L. Kellog and P.J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    B.D. Yu and M. Scheffler, submitted for publication.Google Scholar
  8. 8.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and D.J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    B. Kohler, S. Wilke, M. Scheffler, R. Kouba, and C. Ambrosch-Draxl, Comput. Phys. Commun. 94, 31–48 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    R. Stumpf and M. Scheffler, Comput. Phys. Commun. 79, 447 (1994), M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, to be published.ADSCrossRefGoogle Scholar
  11. 11.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Levy, Proc. Natl. Acad. Sci. (USA) 76, 6062 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    We limit our discussion in this paper to non-magnetic systems. However, it is straightforward to generalize DFT and to write the total-energy functional in terms of the electron density and the magnetization density (see for example R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer Verlag, Berlin, Heidelberg, New York, 1990)).Google Scholar
  14. 14.
    All equations are noted in Hartree atomic units, i.e., the unit of length is 1 Bohr = 0.5292 Å, the unit of energy is 1 Hartree = 27.2116 eV, and ħ = m = e = 1.Google Scholar
  15. 15.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    R. Haydock and V. Heine, to appear in Comments in Condensed Matter Physics..Google Scholar
  17. 17.
    E.P. Wigner, Phys. Rev. 46, 1002 (1934).ADSCrossRefGoogle Scholar
  18. 18.
    M. Gell-Mann and A.K. Brueckner, Phys. Rev. 106, 364 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  21. J.P. Perdew, in Electronic Structure of Solids’ 91, eds. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11.Google Scholar
  22. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).ADSCrossRefGoogle Scholar
  23. 21.
    J.P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).ADSCrossRefGoogle Scholar
  24. J.P. Perdew, Phys. Rev. B 33, 8822 (1986); ibid. 34, 7406(E) (1986).ADSCrossRefGoogle Scholar
  25. 22.
    Y. Wang and J.P. Perdew, Phys. Rev. B 43, 8911 (1991); J.P. Perdew, Physica B 172, 1 (1991); J.P. Perdew, K. Burke, Y. Wang, unpublished.ADSCrossRefGoogle Scholar
  26. 23.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988); J. Chem. Phys. 98, 3892 (1993).ADSCrossRefGoogle Scholar
  27. 24.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  28. 25.
    W. Kohn, A.D. Becke, R.G. Parr, J. Chem. Phys. 100, 12974 (1996).CrossRefGoogle Scholar
  29. 26.
    M. Ernzerhof, J.P. Perdew, and K. Burke, in Topics in Current Chemistry 180 (Springer Verlag, Berlin, Heidelberg, New York, 1996), 1.Google Scholar
  30. 27.
    L. Mitas and R.M. Martin, Phys. Rev. Lett. 72, 2438 (1994).ADSCrossRefGoogle Scholar
  31. J.C. Grossman, L. Mitas, and K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995).ADSCrossRefGoogle Scholar
  32. 28.
    C. Fillipi, X. Gonze, and C.J. Umrigar, to be published in Recent Developments and Applications of Density Functional Theory, ed. J.M. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  33. 29.
    B. Hammer, M. Scheffler, K.W. Jacobsen, and J.K. Norskov, Phys. Rev. Lett. 73, 1400 (1994).ADSCrossRefGoogle Scholar
  34. 30.
    B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995).ADSCrossRefGoogle Scholar
  35. 31.
    B.D. Yu and M. Scheffler, Phys. Rev. Lett. 77, 1095 (1996).ADSCrossRefGoogle Scholar
  36. B.D. Yu and M. Scheffler, Phys. Rev. B, in press.Google Scholar
  37. 32.
    A.R. Williams, P.J. Feibelman, and N.D. Lang, Phys. Rev. B 26, 5433 (1982).ADSCrossRefGoogle Scholar
  38. P.J. Feibelman, Phys. Rev. B 35, 2626 (1987).ADSCrossRefGoogle Scholar
  39. 33.
    M. Scheffler, C. Droste, A. Fleszar, F. Maca, G. Wachutka, and G. Barzel, Physica 172, 143 (1991).CrossRefGoogle Scholar
  40. J. Bormet, J. Neugebauer, and M. Scheffler, Phys. Rev. B 49, 17242 (1994).ADSCrossRefGoogle Scholar
  41. 34.
    A review on the cluster method is given in: J.L. Witten and H. Yang, Surf. Sci. Rep. 24, 55 (1996).CrossRefGoogle Scholar
  42. 35.
    R. Stumpf and M. Scheffler, Phys. Rev. B 53, 4958 (1996).ADSCrossRefGoogle Scholar
  43. 36.
    J. Ihm, A. Zunger, and M.L. Cohen, J. Phys. C 12, 4409 (1979).ADSCrossRefGoogle Scholar
  44. 37.
    G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).ADSCrossRefGoogle Scholar
  45. D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).ADSCrossRefGoogle Scholar
  46. H.S. Greenside and M. Schlüter, Phys. Rev. B 28, 535 (1983).ADSCrossRefGoogle Scholar
  47. D.R. Hamann, Phys. Rev. B 40, 2980 (1989).ADSCrossRefGoogle Scholar
  48. 38.
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  49. 39.
    X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B 44, 8503 (1991); R. Stumpf, X. Gonze, and M. Scheffler, Research report of the Fritz-Haber-Institut (1990).ADSCrossRefGoogle Scholar
  50. 40.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).ADSCrossRefGoogle Scholar
  51. 41.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetADSCrossRefGoogle Scholar
  52. 42.
    R. Stumpf and M. Scheffler, Phys. Rev. Lett. 72, 254 (1994); ibid. 73, 508 (1995)(E).ADSCrossRefGoogle Scholar
  53. 43.
    P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).ADSCrossRefGoogle Scholar
  54. 44.
    H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stolze, K.W. Jacobsen, J. Nørskov, Phys. Rev. B 52, R14380 (1995).ADSCrossRefGoogle Scholar
  55. 45.
    H. Röder, E. Hahn, H. Brune, J.-P. Bucher, and K. Kern, Nature 366, 141 (1993).ADSCrossRefGoogle Scholar
  56. 46.
    H. Brune, C. Romalnczyk, H. Röder, and K. Kern, Nature 369, 469 (1994).ADSCrossRefGoogle Scholar
  57. 47.
    C. Ratsch, A.P. Seitsonen, and M. Scheffler, Phys. Rev. B 55 (1997).Google Scholar
  58. 48.
    G. Boisvert, L.J. Lewis, and M. Scheffler, unpublished.Google Scholar
  59. 49.
    A. Madhukar, Surf. Sci. 132, 344 (1983).ADSCrossRefGoogle Scholar
  60. A. Madhukar and S.V. Ghaisas, Appl. Phys. Lett. 47, 247 (1985).ADSCrossRefGoogle Scholar
  61. S.V. Ghaisas and A. Madhukar, J. Vac. Sci. Technol. B 3, 540 (1985).CrossRefGoogle Scholar
  62. S.V. Ghaisas and A. Madhukar, Phys. Rev. Lett. 56, 1066 (1986).ADSCrossRefGoogle Scholar
  63. 50.
    S. Clarke and D.D. Vvedensky, Phys. Rev. Lett. 58, 2235 (1987); Phys. Rev. B 36, 9312 (1987); Phys. Rev. B 37, 6559 (1988); J. Appl. Phys. 63, 2272 (1988).ADSCrossRefGoogle Scholar
  64. S. Clarke, M.R. Wilby, D.D. Vvedensky, T. Kawamura, K. Miki, and H. Tokumoto, Phys. Rev. B 41, 10198 (1990).ADSCrossRefGoogle Scholar
  65. T. Shitara, D.D. Vvedensky, M.R. Wilby, J. Zhang, J.H. Neave, and B.A. Joyce, Phys. Rev. B 46, 6815 (1992); Phys. Rev. B 46, 6825 (1992).ADSCrossRefGoogle Scholar
  66. 51.
    H. Metiu, Y.-T. Lu, and Z. Zhang, Science 255, 1088 (1992).ADSCrossRefGoogle Scholar
  67. 52.
    M.C. Bartelt and J.W. Evans, Phys. Rev. Lett. 75, 4250 (1995).ADSCrossRefGoogle Scholar
  68. 53.
    Z. Zhang, X. Chen, and M. Lagally, Phys. Rev. Lett. 73, 1829 (1994).ADSCrossRefGoogle Scholar
  69. 54.
    J.G. Amar and F. Family, Phys. Rev. Lett. 74, 2066 (1995).ADSCrossRefGoogle Scholar
  70. 55.
    S.V. Khare, N.C. Bartelt, and T.L. Einstein, Phys. Rev. Lett. 75, 2148 (1995).ADSCrossRefGoogle Scholar
  71. 56.
    S. Liu, Z. Zhang, G. Comsa, and H. Metiu, Phys. Rev. Lett. 71, 2967 (1993).ADSCrossRefGoogle Scholar
  72. 57.
    J. Jacobsen, K.W. Jacobsen, P. Stolze, and J.K. N0rskov, Phys. Rev. Lett. 74, 2295 (1995).ADSCrossRefGoogle Scholar
  73. 58.
    Z.-P. Shi, Z. Zhang, A.K. Swan, and J.F. Wendelken, Phys. Rev. Lett. 76, 4927 (1996).ADSCrossRefGoogle Scholar
  74. 59.
    T. Michely, M. Hohage, M. Bott, and G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).ADSCrossRefGoogle Scholar
  75. T. Michely, M. Hohage, M. Bott, M. Morgenstern, Z. Zhang, T. Michely, and G. Comsa, Phys. Rev. Lett. 76, 2366 (1996).ADSCrossRefGoogle Scholar
  76. 60.
    S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 67, 2509 (1991).ADSCrossRefGoogle Scholar
  77. 61.
    J.A. Gaspar and A.G. Eguiluz, Phys. Rev. B 40, 11976 (1989).ADSCrossRefGoogle Scholar
  78. 62.
    S. Stoyanov and D. Kashchiev, in Current Topics in Material Science, ed. E. Kaldis (North-Holland, Amsterdam, 1981), vol. 7, pp. 69–141.Google Scholar
  79. 63.
    G. Boisvert, L.J. Lewis, and A. Yelon, Phys. Rev. Lett. 75, 469 (1995).ADSCrossRefGoogle Scholar
  80. 64.
    D.W. Bassett and P.R. Webber, Surf. Sci. 70, 520 (1978).ADSCrossRefGoogle Scholar
  81. 65.
    G. Ayrault and G. Ehrlich, J. Chem. Phys. 60, 281 (1974).ADSCrossRefGoogle Scholar
  82. 66.
    S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 62, 2297 (1989); Surf. Sci. 239, 301 (1990).ADSCrossRefGoogle Scholar
  83. 67.
    G.L. Kellog, Surf. Sci. 246, 31 (1991).ADSCrossRefGoogle Scholar
  84. 68.
    C.L. Liu, J.M. Cohen, J.B. Adams, and A.F. Voter, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  85. 69.
    T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981); Phys. Rev. B 27, 5686 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. Ratsch
    • 1
  • P. Ruggerone
    • 1
  • M. Scheffler
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin-DahlemGermany

Personalised recommendations