Diffusion of Hydrogen and Deuterium on Ni(111) Over a Wide Range of Temperature: Exploring Quantum Diffusion on Metals

  • X. D. Zhu
  • G. X. Cao
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

From the decay of a periodic modulation of an adsorbate density at spacing ranging from 0.38 to 16.6 μm, we measured the diffusion of hydrogen (1H) and deuterium (2H) on Ni(111) from 65 to 150 K. In this temperature range, the diffusion rates D(T) of both isotopes are well described by simple Arrhenius functions of temperature. At a surface coverage of θ = 0.3, we find D0(1H) = 6.4 × 10−7 cm2/sec, Ea(1H) = 2.53 kcal/mol, D0(2H) = 7.1 × 10−6 cm2/sec, and Ea(2H) = 3.44 kcal/mol. At θ = 0.06, we find D0(1H) = 5.4 × 10−7 cm2/sec and Ea(1H) = 2.7 kcal/mol. Our analysis suggests that either the diffusion of both isotopes are classical over-barrier hopping with a large anomalous isotope effect in activation energy originated from the quantum mechanical nature of a barrier-crossing near a saddle point, or the diffusion of hydrogen is already an under-barrier tunneling, while that of deuterium remains a classical over-barrier hopping.

Keywords

Saddle Point Diffusion Rate Hydrogen Isotope Grating Period Adsorbate Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gomer, Rep. Prog. Phys. 53, 917 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    R. DiFoggio and R. Gomer, Phys. Rev. B 25, 3490 (1982).ADSGoogle Scholar
  3. S. C. Wang and R. Gomer, J. Chem. Phys. 83, 4193 (1985).ADSCrossRefGoogle Scholar
  4. C. Dharmadhikari and R. Gomer, Surf. Sci. 143, 223 (1984).ADSCrossRefGoogle Scholar
  5. E.A. Daniels, J.C. Lin, and R. Gomer, Surf. Sci. 204, 129 (1988).ADSCrossRefGoogle Scholar
  6. 3.
    T.-S. Lin and R. Gomer, Surf. Sci. 225, 41 (1991).ADSCrossRefGoogle Scholar
  7. 4.
    X.D. Zhu, A. Lee, A. Wong, and U. Linke, Phys. Rev. Lett. 68, 1862 (1992).ADSCrossRefGoogle Scholar
  8. A. Lee, X.D. Zhu, L. Deng, and U. Linke, Phys. Rev. B 46, 15472 (1992).ADSGoogle Scholar
  9. 5.
    J. Völkl and G. Alefeld, in Hydrogen in Metals I, G. Alefeld and J. Volkl, eds., Topics in Applied Physics Vol. 28, Springer, New York, 1978, pp. 321–348.CrossRefGoogle Scholar
  10. 6.
    D. Richter, R. Hempelmann, and R.C. Bowman, Jr., Hydrogen in Intertnetallic Compounds, L. Schlapbach, ed., Topics in Applied Physics Vol. 67 Springer, Berlin, 1992, p. 97.CrossRefGoogle Scholar
  11. 7.
    D. Steinbinder, H. Wipf, A. Magerl, D. Richter, A.-J., Dianoux, and K. Neumaier, Europhys. Lett. 6, 535 (1988).ADSCrossRefGoogle Scholar
  12. 8.
    H. Wipf, D. Steinbinder, K. Neumaier, P. Gutsmiedl, A. Magerl, and A.-J, Dianoux, Europhys. Lett. 4, 1379 (1987).ADSCrossRefGoogle Scholar
  13. 9.
    R. Kadono, J. Imazato, T. Matsuzaki, K. Nishiyama, K. Nagamine, T. Yamazaki, D. Richter, J.-M. Welter, Phys. Rev. B 39, 23 (1989).ADSGoogle Scholar
  14. 10.
    R.F. Kiefl. R. Kadano, J.H. Brewer, G.M. Luke, H.K. Yen, M. Celio, and E.J. Ansaldo, Phys, Rev. Lett. 62, 792 (1989).ADSCrossRefGoogle Scholar
  15. 11.
    K.W. Kehr, D. Richter, J.-M. Welter, O. Hartmann, E. Karlson, L.O. Norlin, T.O. Niinikoski, and A. Yaouanc, Phys. Rev. B 26, 567 (1982).ADSGoogle Scholar
  16. O. Hartmann, E. Karlson, E. Wäcklegard, R. Wäppling, D. Richter, R. Hempelmann, and T.O. Niinikoski, Phys. Rev. B 37, 4425 (1988).ADSGoogle Scholar
  17. 12.
    T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).ADSCrossRefGoogle Scholar
  18. 13.
    C.P. Flynn and A.M. Stoneham, Phys. Rev. B1, 3966 (1970).ADSGoogle Scholar
  19. 14.
    D. Emin, M.I. Baskes, and W.D. Wilson, Phys. Rev. Lett. 42, 791 (1979).ADSCrossRefGoogle Scholar
  20. 15.
    I. Affleck, Phys. Rev. Lett. 46, 388 (1981).MathSciNetADSCrossRefGoogle Scholar
  21. 16.
    M.J. Gillan, J. Phys. C 20, 3621 (1987).ADSGoogle Scholar
  22. 17.
    H.R. Schober and A.M. Stoneham, Phys. Rev. Lett. 60, 2307 (1988).ADSCrossRefGoogle Scholar
  23. 18.
    T.R. Mattsson, U. Engberg, and G. Wahnstrom, Phys. Rev. Lett. 71, 2615 (1993).ADSCrossRefGoogle Scholar
  24. 19.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, Matthew P.A. Fisher, Anupam Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).ADSCrossRefGoogle Scholar
  25. 20.
    H. Grabert and U. Weiss, Phys. Rev. Lett. 54, 1605 (1985).ADSCrossRefGoogle Scholar
  26. H. Grabert, Linkwitz, S. Dattagupta, and U. Weiss, Europhys. Lett. 2, 631 (1986).ADSCrossRefGoogle Scholar
  27. 21.
    J. Kondo, in Fermi Surface Effects, J. Kondo and A. Yoshimori, eds., Springer Series in Solid State Sciences Vol. 77, Springer-Verlag, Heidelberg, 1988, p. 1–83;ibid., Physica 125B, 279 (1984), pp. 1-40.CrossRefGoogle Scholar
  28. 22.
    A. Auerbach, K.F. Freed, and R. Gomer, J. Chem. Phys. 86, 2356 (1987).ADSCrossRefGoogle Scholar
  29. 23.
    X.D. Zhu and L. Deng, Phys. Rev. B 48, 17527 (1993).ADSGoogle Scholar
  30. 24.
    X.D. Zhu, Phys. Rev. B 50 Rapid Commun., 11279 (1994).ADSGoogle Scholar
  31. 25.
    K.A. Muttalib and J.P. Sethna, Phys. Rev. B 32, 3462 (1985).ADSGoogle Scholar
  32. 26.
    K. Yamada, A. Sakurai, and S. Miyazima, Prog. Theor. Phys. 73, 1342 (1985).ADSCrossRefGoogle Scholar
  33. 27.
    X.D. Zhu, Th. Rasing, and Y.R. Shen, Phys. Rev. Lett. 61, 2883 (1988).ADSCrossRefGoogle Scholar
  34. Xudong Xiao, X.D. Zhu, W. Daum, and Y.R. Shen, Phys. Rev. Lett. 66, 2352 (1991).ADSCrossRefGoogle Scholar
  35. G.A. Reider, U. Hofer, and T.F. Heinz, Phys. Rev. Lett. 66, 1994 (1991).ADSCrossRefGoogle Scholar
  36. X.D. Zhu, Mod. Phys. Lett. B 6, 1217 (1992).ADSGoogle Scholar
  37. 28.
    A. Lee, X.D. Zhu, A. Wong, L. Deng, and U. Linke, Phys. Rev. B 48, 11256 (1993).ADSGoogle Scholar
  38. 29.
    K. Christmann, R.J. Behm, G. Ertl, M.A. Van Hove, W.H. Weinberg, J. Chem. Phys. 70, 4168 (1979).ADSCrossRefGoogle Scholar
  39. K. Christmann, O. Schober, G. Ertl, and M. Neumann, J. Chem. Phys. 60, 4528 (1974).ADSCrossRefGoogle Scholar
  40. 30.
    W. Ho, N.J. DiNardo, and E.W. Plummer, J. Vac. Sic. Technol. 17, 134 (1980).ADSCrossRefGoogle Scholar
  41. 31.
    J.K. Norskov, Phys. Rev. Lett. 48, 1620 (1982); Phys. Rev. B 26, 2875 (1982).ADSCrossRefGoogle Scholar
  42. 32.
    M.J. Puska and R.M. Nieminen, Surf. Sci. 157, 413 (1985).ADSCrossRefGoogle Scholar
  43. 33.
    P. Nordlander, S. Holloway, and J.K. Norskov, Surf. Sci. 136, 59 (1984).ADSCrossRefGoogle Scholar
  44. 34.
    B.M. Rice, B.C. Garrett, M.L. Koszykowski, S.M. Foiles, and M.S. Daw, J. Chem. Phys. 92, 775 (1990).ADSCrossRefGoogle Scholar
  45. 35.
    Yu. Kagan and N.V. Prokofev, Soviet Phys.-J.E.T.P. 63, 1276 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • X. D. Zhu
    • 1
  • G. X. Cao
    • 1
  1. 1.Department of PhysicsUniversity of California at DavisDavisUSA

Personalised recommendations