Low-Temperature Epitaxial Growth of Thin Metal Films: In Situ Electrical Resistivity Study

  • M. Jalochowski
  • M. Hoffmann
  • E. Bauer
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

In the past several years the role of various mechanisms governing the epitaxial layer-by-layer growth mode of metal films at room or even lower temperatures has been discussed in many experimental and theoretical works. Observations of RHEED specular beam intensity oscillations during deposition of Pb at helium temperatures on Si(111) − (6 × 6)-Au, and the presence of pronounced Quantum Size Effects (QSE) in the electrical resistivity,1 have clearly shown that epitaxial layer-by-layer growth even at lowest temperatures is possible.

Keywords

Electrical Resistivity Growth Mode Quantum Size Effect Mean Free Path RHEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jalochowski, M. Hoffmann, and E. Bauer, “Pb layer-by-layer growth at very low temperatures,” Phys. Rev. B 51, 7231 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    N. Trivedi and N. W. Ashcroft, “Quantum size effects in transport properties of metallic films,” Phys. Rev. B 38, 12298 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    M. Jalochowski and E. Bauer, “Reflection high-energy electron diffraction intensity oscillations during the growth of Pb on Si(111),” J. Appl. Phys. 6, 4501 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    M. Jalochowski and E. Bauer, “Quantum size and surface effects in the electrical resistivity and high-energy electron reflectivity of ultrathin lead films,” Phys. Rev. B 3, 5272 (1988).ADSCrossRefGoogle Scholar
  5. M. Jalochowski, E. Bauer, H. Knoppe, and G. Lilienkamp, “Experimental evidence for quantum-size-effect fine structures in the resistivity of ultrathin Pb and Pb-In films,” Phys. Rev. B 45, 13607 (1992).ADSCrossRefGoogle Scholar
  6. 5.
    R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12, 4146 (1975).ADSCrossRefGoogle Scholar
  7. 6.
    G. T. Meaden, Electrical Resistance of Metals, Plenum Press, London (1965).Google Scholar
  8. 7.
    M. Jalochowski, H. Knoppe, G. Lilienkamp, and E. Bauer, “Photoemission from ultrathin metallic films: Quantum size effect, electron scattering, and film structure,” Phys. Rev. B 46, 4693 (1992).ADSCrossRefGoogle Scholar
  9. 8.
    H. H. Weitering, D. R. Heslinga, and T. Hibma, “Structure and growth of epitaxial Pb on Si(111),” Phys. Rev. B 45, 5991 (1992).ADSCrossRefGoogle Scholar
  10. 9.
    J. Nogami, A. A. Baski, and C. F. Quate, “√3 × √3 → 6×6 phase transition on Au/Si(111) surface,” Phys. Rev. Lett. 65, 1611 (1990).ADSCrossRefGoogle Scholar
  11. 10.
    P. I. Cohen, G. S. Petrich, P. R. Pukite, G. J. Whaley, and A. S. Arrott, “Birth-death models of epitaxy, I. Diffraction oscillations from low index surfaces,” Surf. Sci. 216, 222 (1989).ADSCrossRefGoogle Scholar
  12. 11.
    Z. Mitura, M. Strozak, and M. Jalochowski, “RHEED intensity oscillations with extra maxima,” Surf. Sci. Lett. 276, L15 (1992).CrossRefGoogle Scholar
  13. 12.
    K. R. Roos and M. C. Tringides, “Low-temperature, flux-independent epitaxy in Ag/Si(111),” Surf. Sci. 302, 37 (1994).ADSCrossRefGoogle Scholar
  14. 13.
    J. W. Evans, D. E. Sanders, P. A. Thiel, and A. E. DePristo, “Low-temperature epitaxial growth of thin metal films,” Phys. Rev. B 41, 5410 (1990).ADSCrossRefGoogle Scholar
  15. 14.
    J. W. Evans, “Factors mediating smoothness in epitaxial thin-film growth,” Phys. Rev. B 43, 3897 (1991).ADSCrossRefGoogle Scholar
  16. 15.
    R. Biswas, K. Roos, and M. C. Tringides, “Low-temperature growth on Si(111) substrates,” Phys. Rev. B 50, 10932 (1994).ADSCrossRefGoogle Scholar
  17. 16.
    W. F. Egelhoff, Jr., and I. Jacob, “Reflection high-energy electron diffraction (RHEED) oscillations at 77K,” Phys. Rev. Lett. 62, 921 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Jalochowski
    • 1
  • M. Hoffmann
    • 2
  • E. Bauer
    • 2
  1. 1.Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Physikalisches InstitutTechnische Universität ClausthalClausthal-ZellerfeldFederal Republic of Germany

Personalised recommendations