Neutrino Mass

  • Rudolf L. Mössbauer
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

The neutrino was hypothetically introduced into physics in 1930 by W.Pauli in order to explain the radioactive ß-decay with its continuous ß-spectrum. The name neutrino, the Italian word for little neutron, was coined in 1933 after the discovery of the neutron by E. Fermi. A first direct experimental observation of neutrinos was achieved only around 1956 by F.Reines and C.Cowan,1 based on a reaction which today is written as \( \overline {{V_e}} + p \to n + {e^ + } \). In 1962, Lederman, Schwartz, Steinberger and coworkers,2 employing the in-flight decay of pions and kaons, discovered a second type of neutrino, the muon neutrino vμ. In 1975, M. Perl discovered a third charged lepton, the tauon.3 Theoretical arguments and recoil observations suggest its connection with still another kind of neutrino, the tauon neutrino vτ This third type of neutrino, due to lack of intensity, has not yet been directly observed.

Keywords

Neutrino Masse Neutrino Oscillation Charged Lepton Solar Neutrino Seesaw Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature References

  1. 1.
    C.L.Cowan, Jr., F.Reines et al., Science 124: 103 (1956).ADSCrossRefGoogle Scholar
  2. 2.
    G.Danby et al., Phys.Rev.Lett. 9: 36 (1962).ADSCrossRefGoogle Scholar
  3. 3.
    M.Perl et al. Phys. Rev. Lett. 35: 1489 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    see, e.g., J.R.Carter, J.int Intl. Lepton-Photon Symposium and Europhysics Conf. on High Energy Physics, World Scientific, Singapore, 2: 3 (1991).Google Scholar
  5. 5.
    F.J.Hasert et al., Phys.Lett. 46B: 121 (1973).CrossRefGoogle Scholar
  6. 6.
    B.W.Lee and S.Weinberg, Phys.Rev.Lett. 39: 165 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    E.Belesev et al., Phys.Lett. B350: 263 (1995)Google Scholar
  8. 8.
    K.Assamagan B335:231 (1994)Google Scholar
  9. ALEPH Collaboration, D.Buskulic et al., Phys.Lett. B 349:585 (1995)Google Scholar
  10. 10.
    see e.g. A.Balysh et al., Proc. XXVII Intl.Conf. on High Energy Phys., Glasgow (1994)Google Scholar
  11. 11.
    L.Wolfenstein, Phys.Rev. D 17: 2369 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    S.P.Mikhaeyev and A.Yu Smimov, Nuovo Cimento 9C: 17 (1986)CrossRefGoogle Scholar
  13. 13.
    B.Cleveland et al., Nucl.Phys.B Proc. Suppl. 38: 47 (1995)CrossRefGoogle Scholar
  14. 14.
    Y.Suzuki et al., Nucl.Phys.B Proc. Suppl. 38: 54 (1995)CrossRefGoogle Scholar
  15. 15.
    W.Hampel et al., submitted June 1996 to Physics Letters BGoogle Scholar
  16. 16.
    J.N.Abdurashitor et al., Nucl.Phys.B Proc. Suppl. 48: 299 (1996)CrossRefGoogle Scholar
  17. 17.
    J.N. Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 64: 885 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Rudolf L. Mössbauer
    • 1
  1. 1.Department of physicsTechnical University of MunichGarchingGermany

Personalised recommendations