Gaugino Condensation, Loop Corrections, and S-Duality Constraint

  • Kamran Saririan
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

Amongst the candidates for fundamental unified theories, heterotic superstring theory with gauge group E 8 × E 8 seems to be the most promising one. This is because the spectrum of the theory easily accomodates the Standard Model spectrum and gauge structure. In addition, the underlying gauge group contains an extra factor of E 8 which provides an ‘hidden sector’, which couples to the observable sector only through gravity, and, as will be discussed below, plays a crucial role in the mechanism of supersymmetry breaking. Furthermore, the effective theories that describe the heterotic string in 4 dimensions below the Planck scale are (nonrenormalizable) locally supersymmetric effective field theories. Indeed, requiring supersymmetry at energies well above M w in order to stabilize the gauge hierarchy, in some sense forces one to consider locally supersymmetric theories: A unified field theory must include gravity. Within the framework of General Relativity, a supersymmetric theory has to be locally supersymmetric. This follows from the fact that the supersymmetry transformation on the metric, or on the vielbein must include general coordinate transformations. Supergravity theories are nonrenormalizable, but can be consistently viewed as low-energy effective field theories (LEEFT) for the massless modes of superstring.

Keywords

Gauge Coupling Supersymmetry Breaking Heterotic String Hide Sector Effective Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Dixon, V. Kaplunovsky, and J. Louis Nucl. Phys. B355: 649 (1991).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. K. Gaillard, and B. Zumino, Nucl. Phys. B193: 221 (1981);MathSciNetADSCrossRefGoogle Scholar
  3. S. Ferrara, J. Scherk., and B. Zumino, Nucl. Phys. 121: 393 (1977).ADSCrossRefGoogle Scholar
  4. [3]
    P. Binétruy, and M.K. Gaillard, Phys. Lett. B365: 87 (1996).Google Scholar
  5. [4]
    K. Saririan, preprint LBL-381995, UCB-PTH-96/03 (To appear).Google Scholar
  6. [5]
    M. K. Gaillard, and Rulin Xiu, Phys. Lett. B296: 71 (1992);Google Scholar
  7. R. Xiu, Phys. Rev. D49: 6656 (1994);ADSGoogle Scholar
  8. S. P. Martin, and P. Ramond, Phys. Rev. D51: 6515 (1995);ADSCrossRefGoogle Scholar
  9. K.R. Dienes, and A.E. Farraggi, Phys. Rev. Lett. 75: 2646 (1995).ADSCrossRefGoogle Scholar
  10. [6]
    G. Veneziano, and S. Yankielowicz, Phys. Lett. B113: 231 (1982).Google Scholar
  11. [7]
    E. Witten, Nucl. Phys. B202: 253 (1982).MathSciNetADSCrossRefGoogle Scholar
  12. [8]
    H. P. Nilles, Phys. Lett. B115: 193 (1982);Google Scholar
  13. S. Ferrara, L. Girardello, H. P. Nilles, Phys. Lett. B125 457 (1983).Google Scholar
  14. [9]
    P. Binétruy, and M.K. Gaillard, Phys. Lett. B253: 119 (1991).MathSciNetGoogle Scholar
  15. [10]
    M. Dine, R. Rhom, N. Seiberg, and E. Witten, Phys. Lett. B156: 55 (1985).MathSciNetGoogle Scholar
  16. [11]
    G.L. Cardoso, and B.A. Ovrut, Nucl. Phys. B369: 351 (1992);MathSciNetADSCrossRefGoogle Scholar
  17. G.L. Cardoso, and B.A. Ovrut, ibid., Nucl. Phys. B392: 315 (1993);MathSciNetADSCrossRefGoogle Scholar
  18. G.L. Cardoso, and B.A. Ovrut, ibid., Nucl. Phys. B418: 535 (1994);MathSciNetADSMATHCrossRefGoogle Scholar
  19. S. Ferrara, abd M. Villasante, Phys. Lett. B186: 87 (1987);Google Scholar
  20. P. Binétruy, G. Girardi, R. Grimm, and M. Müller, Phys. Lett. B265 111 (1991);MathSciNetGoogle Scholar
  21. P. Adamietz, P. Binétruy, G. Girardi, and R. Grimm, Nucl. Phys. B401: 257 (1993);ADSMATHCrossRefGoogle Scholar
  22. J.P. Derendinger, F. Quevedo, M. Quiros, Nucl. Phys. B428: 228 (1994).MathSciNetCrossRefGoogle Scholar
  23. [12]
    I. Antoniadis, K.S. Narain, and T.R. Taylor, Phys. Lett. B267: 37 (1991).MathSciNetGoogle Scholar
  24. [13]
    M.K. Gaillard, and T.R. Taylor, Nucl. Phys. B381: 577 (1992).ADSCrossRefGoogle Scholar
  25. [14]
    A. Font, L. I. Ibanez, D. Lust, F. Quevedo, Phys. Lett. 241: 35 (1990).MathSciNetGoogle Scholar
  26. [15]
    A. Sen, Int. J. Mod. Phys. A9: 3707 (1994)Google Scholar
  27. J. H. Schwarz, and A. Sen, Phys. Lett. B312: 105 (1993);MathSciNetGoogle Scholar
  28. J. H. Schwarz, and A. Sen, Phys. Lett. B411: 105 (1994);Google Scholar
  29. I. Girardello, A. Giveon, M. Porratti, A. Zaffaroni, Nucl. Phys. B448 127 (1995).ADSMATHCrossRefGoogle Scholar
  30. [16]
    M.K. Gaillard, V. Jain, and K. Saririan, preprint LBL-34984, hep-th/9606052 to be published in Phys. Rev. D; Also, Phys. Lett.B387: 520 (1996).Google Scholar
  31. [17]
    T. Banks, and M. Dine, Phys. Rev. D:50 7454 (1994).Google Scholar
  32. [18]
    P. Binétruy, M. K. Gaillard, and Y-Y. Wu, preprint LBNL-38590, UCB-PTH 96/13; hep-th/9605170 (to be published in Nucl. Phys. B).Google Scholar
  33. [19]
    V. Kaplunovsky, and J. Louis, Nucl. Phys. B422: 57 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  34. [20]
    P. Binétruy, G. Girardi, R. Grimm, and M. Muller, Phys. Lett. 189B: 83 (1987);MathSciNetGoogle Scholar
  35. P. Binétruy, G. Girardi, and R. Grimm, Annecy preprint LAPP-TH-275–90, (1990).Google Scholar
  36. [21]
    M. A. Shifman, and A. I. Vainshtein, Nucl. Phys. B277: 456 (1986); and Nucl. Phys. B359: 571 (1991).ADSCrossRefGoogle Scholar
  37. [22]
    V. Kaplunovsky, and J. Louis, Nucl. Phys. B444: 191 (1995).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kamran Saririan
    • 1
  1. 1.Lawrence Berkeley National Laboratory and Department of PhysicsTheoretical Physics GroupBerkeleyUSA

Personalised recommendations