Neutrino Mass Models with an Abelian Family Symmetry

  • Stéphane Lavignac
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

Fermion masses are one of the most fundamental problems of particle physics. While the origin of the observed hierarchy between quark and charged lepton masses remains unexplained in the Standard Model and most of its extensions, the question of whether the neutrinos are massive or not is still open. On the theoretical side, since neutrino masses are not protected by any fundamental symmetry1, there is no reason to expect them to be zero. Now, if the neutrinos are massive, the rather unnatural suppression of their masses relative to the quarks and charged leptons of the same family has to be explained. On the phenomenological side, massive neutrinos could solve in a natural way several astrophysical and cosmological problems.

Keywords

Minimal Supersymmetric Standard Model Neutrino Mass Neutrino Oscillation Atmospheric Neutrino Family Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.P. Mikheyev and A.Yu. Smirnov, Yad. Fiz. 42, 1441 (1985) [Sov. J. Nucl. Phys. 42, 913 (1985)]; Il Nuovo Cimento C 9, 17 (1986); L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); Phys. Rev. D 20, 2634 (1979).Google Scholar
  2. [2]
    M. Gell-Mann, P. Ramond, and R. Slansky in Sanibel Talk, CALT-68–709, Feb 1979, and in Supergravity (North Holland, Amsterdam 1979 ). T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan, 1979.Google Scholar
  3. [3]
    C. Froggatt and H. B. Nielsen Nucl. Phys. B147 (1979) 277.Google Scholar
  4. [4]
    M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B398 (1993) 319, Nucl. Phys. B420 (1994) 468.Google Scholar
  5. [5]
    L. Ibânez and G. G. Ross, Phys. Lett. B332 (1994) 100.Google Scholar
  6. [6]
    P. Binétruy and P. Ramond, Phys. Lett. B350 (1995) 49.Google Scholar
  7. [7]
    V. Jain and R. Shrock, Phys. Lett. B352 (1995) 83.Google Scholar
  8. [8]
    E. Dudas, S. Pokorski and C.A. Savoy, Phys. Lett. B356 (1995) 45.Google Scholar
  9. [9]
    L. Ibânez, Phys. Lett. B303 (1993) 55.Google Scholar
  10. [10]
    H. Dreiner, G.K. Leontaris, S. Lola, G.G. Ross and C. Scheich, Nucl. Phys. B436 (1995) 461; G.K. Leontaris, S. Lola, C. Scheich and J.D. Vergados, Phys. Rev. D53 (1996) 6381.Google Scholar
  11. [11]
    Y. Grossman and Y. Nir, Nucl. Phys. B448 (1995) 30.ADSCrossRefGoogle Scholar
  12. [12]
    P Ramond, 25th Anniversary Volume of the Centre de Recherches Mathématiques de l’Université de Montréal.Google Scholar
  13. [13]
    P. Binétruy, S. Lavignac and P. Ramond, preprint LPTHE-ORSAY 95/54, UFIFT-HEP-96–1, hep-ph/9601243 (to be published in Nuclear Physics).Google Scholar
  14. [14]
    P. Binétruy, S. Lavignac, S. Petcov and P. Ramond, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Stéphane Lavignac
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Paris-SudOrsay CédexFrance

Personalised recommendations