Overview of Tumor-Inhibiting Non-Platinum Compounds

  • Bernhard K. Keppler
  • Ellen A. Vogel

Abstract

Cancer mortality in the western world is still on the increase today. In the last few decades, platinum and other metal coordination compounds have been the subject of numerous investigations in the field of cancer chemotherapy. Cisplatin and its derivatives feature prominently here (Figure 1)1,2,3,4. One of the reasons why tumor-inhibiting non-platinum compounds are receiving increasing attention is the fact that cisplatin and other platinum complexes have a relatively limited spectrum of indication. Cisplatin shows its best activity in testicular carcinomas and has good activity in ovarian carcinomas, tumors of the head and neck and bladder tumors2,3,4. It is not, or only insufficiently, active against the tumors that account for the major share of cancer mortality today, such as tumors of the lung and the gastrointestine. The synthesis of new compounds which are active in these platinum-resistant tumors must therefore be one of the aims in inorganic chemistry.

Keywords

Phenyl Ring Cancer Chemotherapy Ruthenium Complex Platinum Complex Titanium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Rosenberg, Platinum complexes for the treatment of cancer, Interdiscipl. Science Rev. 3, 2, 134 (1978).CrossRefGoogle Scholar
  2. 2.
    A.W. Prestayko, S.T. Crooke, and S.K. Carter, eds., “Cisplatin — Current status and new developments”, Academic Press, New York (1980).Google Scholar
  3. 3.
    D.C.H. McBrien and T.F. Slater, eds., “Biochemical mechanisms of platinum antitumour drugs”, IRL Press, Oxford (1986).Google Scholar
  4. 4.
    St. Howell, ed., “Platinum and other metal coordination compounds in cancer chemotherapy”, Plenum Press, New York (1991).Google Scholar
  5. 5.
    B.K. Keppler, M.R. Berger, Th. Klenner, and M.E. Heim, Metal complexes as antitumour agents, Adv. Drug Res. 19:243 (1990).Google Scholar
  6. 6.
    R. Sephton and S. De Abrew, Mechanism of gallium uptake in tumours, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).Google Scholar
  7. 7.
    J.L. Domingo and J. Corbella, A review of the pharmacological and toxicological properties of gallium, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).Google Scholar
  8. 8.
    Ph. Collery and C. Pechery, Clinical experience with tumor-inhibiting gallium complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  9. 9.
    D. Lekim and L. Samochowiec, eds., “Germanium in biologischen Systemen”, Semmelweis Verlag, Hoya(1985).Google Scholar
  10. 10.
    M. Slavik, O. Blanc, and J. Davis, Spirogermanium: A new investigational drug of novel structure and lack of bone marrow toxicity. Invest New Drugs 1:225 (1983).PubMedGoogle Scholar
  11. 11.
    K. Miyao, T. Onishi, K. Asai, S. Tomizawa, and F. Suzuki, Toxicology and phase I studies on a novel organogermanium compound, Ge-132, in: “Current Chemotherapy and Infectious Disease”, J.D. Nelson, C. Grassi, eds., The American Society for Microbiology, Washington DC (1980).Google Scholar
  12. 12.
    S.G. Ward and R.C. Taylor, Anti-tumor activity of the main-group metallic elements: aluminum, gallium, indium, thallium, germanium, lead, antimony and bismuth, in: “Metal-Based Anti-Tumour Drugs”, M.F. Gielen, ed., Freund Publishing House, London (1988).Google Scholar
  13. 13.
    B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten, and E. Vogel, Tumor-inhibiting bis(β-dike-tonato) metal complexes. Budotitane, cis-diemoxybis(1-phenylbutane-1,3-dionato)titanium(IV), the first transition metal complexes after platinum complexes to have qualified for clinical trials. Structure & Bonding 78:97 (1991).CrossRefGoogle Scholar
  14. 14.
    B.K. Keppler, C. Friesen, H. Vongerichten, and E. Vogel, Budotitane, a new tumor-inhibiting titanium compound: preclinical and clinical development, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  15. 15.
    P. Köpf-Maier, Antitumor bis(cyclopentadienyl)metal complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  16. 16.
    Ph. Collery, M. Morel, H. Millart, B. Desoize, C. Cossart, D. Perdu, H. Vallerand, J.C. Bouana, C. Pechery, J.C. Etienne, H. Choisy, and J.M. Dubois de Montreynaud, Oral administration of gallium in conjunction with platinum in lung cancer treatment, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).Google Scholar
  17. 17.
    Ph. Collery, H. Vallerand, A. Prevost, D. Milosevic, M. Morel, J.P. Dubois, B. Desoize, C. Pechery, J.M. Dubois de Montreynaud, H. Millart, and H. Choisy, Therapeutic index of gallium, orally administered, as chloride, in combination with cisplatinum and etoposide in lung cancer patients, in: “Metal Ions in Biology and Medicine”, J. Anastassopoulou, Ph. Collery, J.C. Etienne, and Th. Theophanides, eds., John Libbey Eurotext, Paris (1992).Google Scholar
  18. 18.
    Ph. Collery, H. Millart, C. Pechery, F. Kratz, and B.K. Keppler, New gallium complexes for a cisplatin combination therapy, in: “Metal Ions in Biology and Medicine”, J. Anastassopoulou, Ph. Collery, J.C. Etienne, and Th. Theophanides, eds., John Libbey Eurotext, Paris (1992).Google Scholar
  19. 19.
    B.K. Keppler and D. Schmähl, Preclinical Evaluation of Dichlorobis(l-phenylbutane-1,3-dionato)-titanium(IV) and budotitane, Arzneim.-Forsch./Drug Res. 36 (II), 12, 1822 (1986).Google Scholar
  20. 20.
    B.K. Keppler, H. Bischoff, M.R. Berger, M.E. Heim, G. Reznik, and D. Schmähl, Preclinical development and first clinical studies of budotitane, in: “Platinum and other metal coordination compounds in cancer chemotherapy”, M. Nicolini, ed., Martinus Nijhoff Publishing, Boston (1988).Google Scholar
  21. 21.
    P. Comba, H. Jakob, B. Nuber, and B.K. Keppler, Solution structures and isomer distributions of bis(β-diketonato) complexes of titanium(IV) and cobalt(III). Inorg. Chem. 33:3396 (1994).CrossRefGoogle Scholar
  22. 22.
    T. Schilling, B.K. Keppler, M.E. Heim, K. Burk, J. Rastetter, and A.-R. Hanauske, Phase I clinical and phannacokinetic trial of the new metal complex budotitane, Onkologie 16:S1, Karger, Basel (1993).Google Scholar
  23. 23.
    B.M. Sutton and R.G. Franz, eds., “Bioinorganic Chemistry of Gold Coordination Compounds”, Smith Kline & French Laboratories, Philadelphia (1983).Google Scholar
  24. 24.
    A.J. Lewis and D.T. Walz, Immunopharmacology of gold, Progr. Medicinal Chem. 19, G.P. Ellis and G.B. West, eds., Elsevier Biomédical Press, Lausanne, 1 (1982).Google Scholar
  25. 25.
    O.M. Ni Dhubhghaill and P.J. Sadler, Gold complexes in cancer chemotherapy, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  26. 26.
    P.J. Sadler and R.E. Sue, The chemistry of gold drugs, Metal-Based Drugs 1, 2–3, 107 (1994).CrossRefPubMedGoogle Scholar
  27. 27.
    M. Gielen, Tin-based antitumour drugs, in: “Metal Ions in Biology and Medicine”, Ph. Collery, ed., John Libbey Eurotext, Montrouge (1994).Google Scholar
  28. 28.
    M. Gielen, A. El Khloufi, M. Biesemans, A. Bouhdid, D. de Vos, B. Mahieu, and R. Willem, Synthesis, characterization and high in vitro antitumour activity of novel triphenyltin carboxylates, Metal-Based Drugs 1,4, 305(1994).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Gielen, Tin-based antitumour drugs, Metal-Based Drugs 1, 2–3, 213 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    M.J. Clarke, Oncological implications of the chemistry of ruthenium, in: “Metal Ions in Biological Systems”, 11: Metal Complexes as Anticancer Agents, H. Sigel, ed., Marcel Dekker, New York (1980).Google Scholar
  31. 31.
    M.J. Clarke, Ruthenium complexes: Potential roles in anti-cancer Pharmaceuticals, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  32. 32.
    G. Mestroni, E. Alessio, G. Sava, S. Pacor, and M. Coluccia, The development of tumor-inhibiting ruthenium dimethylsulfoxide complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  33. 33.
    G. Mestroni, E. Alessio, G. Sava, S. Pacor, M. Coluccia, and A. Boccarelli, Water-soluble ruthenium-(III)-dimethyl sulfoxide complexes: chemical behaviour and pharmaceutical properties, Metal-Based Drugs 1, 1, 43 (1994).CrossRefGoogle Scholar
  34. 34.
    B.K. Keppler, M. Henn, U.M. Juhl, M.R. Berger, R. Niebl, and F.E. Wagner, New ruthenium complexes for the treatment of cancer, Progr. Clin. Biochem. Med. 10:41 (1989).CrossRefGoogle Scholar
  35. 35.
    B.K. Keppler, K.-G. Lipponer, B. Stenzel, and F. Kratz, New tumor-inhibiting ruthenium complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  36. 36.
    O.M. Ni Dhubhghaill, W.R. Hagen, B.K. Keppler, K.-G. Lipponer, and P.J. Sadler, Aquation of the anti-cancer complex trans-[RuCl4(Him)2] (Him = imidazole), J. Chem. Soc. Dalton Trans., 3305, (1994).Google Scholar
  37. 37.
    J. Chatlas, R. van Eldik, and B.K. Keppler, Spontaneous aquation reactions of a promising tumor inhibitor trans-imidazolium-tetrachlorobis(imidazole)ruthenium(III), trans-HIm[RuCl4(Im)2], Inorg. Chim. Acta 233:59 (1995).CrossRefGoogle Scholar
  38. 38.
    F. Kratz, B.K. Keppler, L. Messori, C. Smith, and E.N. Baker, Protein-binding properties of two antitumour Ru(III) complexes to human apotransferrin and apolactoferrin, Metal-Based Drugs 1, 2–3,169 (1994).CrossRefPubMedGoogle Scholar
  39. 39.
    M.R. Berger, M.H. Seelig, and A. Galeano, Metal complexes with specific activity against colorectal tumors: evaluation of a tumor model close to the clinical situation, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).Google Scholar
  40. 40.
    M.H. Seelig, M.R. Berger, and B.K. Keppler, Antineoplastic activity of three ruthenium derivatives against chemically induced colorectal carcinoma in rats, J. Cancer Res. Clin. Oncol. 118:195 (1992).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Bernhard K. Keppler
    • 1
  • Ellen A. Vogel
    • 1
  1. 1.Anorganisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations