Redox Properties of Cytochromes and Bioelectronics

  • Geoffrey R. Moore
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 2)

Abstract

The structural basis of metalloprotein action has been under investigation for many years by numerous researchers. The relationships they have uncovered should inform the discussion concerning the use of metalloproteins in synthetic electronic devices. The present paper is a contribution to this discussion. It concentrates on properties of cytochromes: these are haem-containing proteins in which the haem iron undergoes a reversible redox state change during their normal biological function (Belka et al., 1979). The paper will summarise some of the work currently going on in the author’s laboratory and review certain topics relevant to the use of cytochromes in electronic devices. These include factors influencing rates of interprotein electron transfer and redox potentials of cytochromes c,and redox properties of non-haem-iron-containing cytochromes b which act as iron-storage proteins, bacterioferritins, in bacteria.

Keywords

Redox Property Haem Iron Axial Ligand Haem Group Work Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Massad, F. K., Kadir, F. H. A., and Moore, G. R., 1992, Biochem. J. 283: 177–180.PubMedGoogle Scholar
  2. Bielka, H., Horecker, B. L., Jacoby, W. B., Karlson, P., Keil, B., Liebecq, C., Lindberg, B., and Webb, E. C., 1979, in Recommendations of The Nomenclature Commission of The IUB. Academic Press, New York.Google Scholar
  3. Chance, B., 1974, Ann. N.Y.Acad.Sci. 227: 613–626.PubMedCrossRefGoogle Scholar
  4. Chapman, S. K., White, S. A., and Reid, G. A., 1991, Adv. Inorg. Chem. 36: 257–301.Google Scholar
  5. Cheesman; M. R., Thomson, A. J., Greenwood, C., Moore, G. R., and Kadir, F. H. A., 1990, Nature 346: 771–773.CrossRefGoogle Scholar
  6. Choma, C. T., Lear, J. D., Nelson, M. J., Dutton, P. L., Robertson D. E., and DeGrado, W. F., 1994, J. Am. Chem. Soc. 116: 856–865.CrossRefGoogle Scholar
  7. Concar, D. W., Hill, H. A. O., Moore, G. R., Whitford, D., and Williams, R. J. P., 1986, FEBS Letters 206:15–19. Creighton, T. E.,1993, in Proteins 2nd edition, 507pp. W.H.Freeman, New York.Google Scholar
  8. Cutler, R. L., Davies, A. M., Creighton, S., Warshel, A., Moore, G. R., Smith, M., and Mauk, A. G., 1989, Biochemistry 28: 3188–3197.PubMedCrossRefGoogle Scholar
  9. Davies, A. M., Thurgood, A. G. P., Greenwood, C, Guillemette, J. G., Smith, M., Mauk, A. G., and Moore, G. R., 1993, Biochemistry 32: 5431–5455.PubMedCrossRefGoogle Scholar
  10. Dickerson, R. E., 1980, Sci Amer 242: 136–153.CrossRefGoogle Scholar
  11. Ellfolk, N., Ronnberg, M., Aasa, R., Andreasson L-E., and Vanngard, T., 1983, Biochim Biophys Acta 743: 23–30.PubMedCrossRefGoogle Scholar
  12. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E., 1979, in The Porphyrins 7 (Ed. D. Dolphin), Academic Press, London New York 149–240.CrossRefGoogle Scholar
  13. Foote, N., Peterson, J., Gadsby, P. M. A., Greenwood C., and Thomson, A. J., 1985, Biochem J 230:227–237 Ford, G. C., Harrison, P. M., Rice, D. W., Smith, J. M. A., Treffry, A., White, J. L., and Yariv, J.,1984, Phil. Trans. R. Soc. Lond. B304: 551–565.Google Scholar
  14. Granick, S., 1946, Chemical Revs. 38: 379–403.CrossRefGoogle Scholar
  15. Gupta, R. K., Koenig, S. H., and Redfield, A. G., 1972, J Mag Res 7: 66–73.Google Scholar
  16. Harrison, P. M., Andrews, S. C., Artymiuk, P. J., Ford, G. C., Guest, J. R., Hirsmann, J., Lawson, D. M.Google Scholar
  17. Livingstone, J. C., Smith, J. M. A., Treffry, A., and Yewdall, S. J., 1991, Adv. Inorg. Chem. 36: 449–486.CrossRefGoogle Scholar
  18. Haser, R., Pierrot, M., Frey, M., Payan, F., Astier, J. P., Bruschi, M., and Le Gall, J., 1979, Nature 282: 806–810.PubMedCrossRefGoogle Scholar
  19. Higuchi, Y., Kusunoki, M., Matsuura, Y., Yasuoka, N., and Kakudo, M., 1984 JMol Biol 172: 109–139.CrossRefGoogle Scholar
  20. Kadir, F. H. A., Al-Massad, F. K., and Moore, G. R., 1992, Biochem. J. 282: 867–870.PubMedGoogle Scholar
  21. Kadir, F. H. A.,and Moore, G. R., 1990, FEBS Lett. 276: 81–84.PubMedCrossRefGoogle Scholar
  22. Kassner, R. J., 1973, JAm Chem Soc 95: 2674–2677.CrossRefGoogle Scholar
  23. Koppenol, W. H., and Margoliash, E., 1982, JBiol Chem 257: 4426–4437.Google Scholar
  24. Le Brun, N. E., Wilson, M.,T., Andrews, S., Guest, J. R., Harrison, P. M., Thomson, A. J., and Moore, G. R., 1993, FEBS Letters 333: 197–202.PubMedCrossRefGoogle Scholar
  25. Leitch, F. A., Moore, G. R., and Pettigrew, G.W., 1984, Biochemistry 23: 1831–1838.PubMedCrossRefGoogle Scholar
  26. Lemberg, R., and Barrett, J., 1973, in The Cytochromes, Academic Press, London New York.Google Scholar
  27. Louie, G. V., Hutcheon, W. L. B., and Brayer, G. D., 1988, JMol Biol 199: 95–314.CrossRefGoogle Scholar
  28. Mann, S., Williams, J. M., Treffry, A., and Harrison, P. M., 1987, J. Mol. Biol. 198:405–416. Marcus, R. A., and Sutin, N., 1985, Biochim Biophys Acta 811: 265–322.Google Scholar
  29. Martinez, S. E., Huang, D., Szczepaniak, A., Cramer W. A., and Smith J. L., 1994, Structure 2:95–105. Mathews, F. S., 1984, Prog. Biophys. Mol. Biol. 45: 1–56.Google Scholar
  30. Matsuura,Y., Takano, T., and Dickerson, R. E., 1982, JMol Biol 156: 389–409.CrossRefGoogle Scholar
  31. Matthew, J. B., Weber, P. C., Salemme, F. R., and Richards, F. M., 1983, Nature 301:169–171. Meyer, T. E., and Kamen, M. D., 1982, Adv Prot Chem 35: 105–212.Google Scholar
  32. Moore, G. R., 1983, FEBS Letters 161: 171–175.PubMedCrossRefGoogle Scholar
  33. Moore, G. R., 1994, in Encyclopedia of Inorganic Chemistry in press, John Wiley publishers.Google Scholar
  34. Moore, G. R., and Pettigrew, G. W., 1990, in Cytochromes c: Evolutionarily, Structural and Physicochemical Aspects, Springer-Verlag. 478.CrossRefGoogle Scholar
  35. Moore, G. R., Cheesman, M. R., Kadir, F. H. A., Thomson, A. J., Yewdell, S.J., and Harrison, P.M., 1992, Biochem. J. 287: 457–460.PubMedGoogle Scholar
  36. Moore, G. R., Harris, D. E., Leitch, F. A., and Pettigrew, G. W., 1984, Biochim. Biophys. Acta. 764: 331–342.Google Scholar
  37. Moore, G. R., Kadir, F. H. A., and Al-Massad, F. K., 1992, J. Inorg. Biochem. 47: 175–181.Google Scholar
  38. Moore, G. R., Mann, S, and Bannister, J. V., 1986, J.Inorg.Biochem. 28: 329–336.PubMedCrossRefGoogle Scholar
  39. Moura, J. J. G., Santos, H., Moura, I., LeGall, J., Moore, G. R., Williams, R. J. P., and Xavier, A. V., 1982, Eur.J.Biochem. 127: 151–155.PubMedCrossRefGoogle Scholar
  40. Moura, J. J. G., Xavier, A. V., Cookson, D. J., Moore, G. R., Williams, R. J. P., Faque, Bruschi, M.G., and Le Gall, J., 1978, Biochem. Soc. Trans. 6: 1285–1287.PubMedGoogle Scholar
  41. Nitschke, W., and Rutherford, A. W., 1994, Biochem. Soc. Trans. in press.Google Scholar
  42. Pettigrew, G. W., and Moore, G. R., 1987, in Cytochromes c: Biological Aspects, Springer-Verlag. 282. Rigby, S. E. J., Burch, A. M., and Moore, G. R., 1991, Mag. Reson. Chem. 29: 1036–1039.Google Scholar
  43. Robertson, D. E., Farid, R. S., Moser, C. C., Urbauer, J. L., Mulholland, S. E., Pidikiti, R., Lear, J. D., Wand, A. J., DeGrado, W. F., and Dutton, P. L., 1994, Nature 368: 425–432.PubMedCrossRefGoogle Scholar
  44. Rogers, N. K., Moore, G. R., and Sternberg, M. J., 1985, J.Mol.Biol. 182: 613–616.PubMedCrossRefGoogle Scholar
  45. Rohrer, J. S., Frankel, R. B., Papaefthymiou, G. C., and Theil, E. C., 1987, Inorg. Chem. 28: 3393–3395.CrossRefGoogle Scholar
  46. Salemme, F. R., 1977, Ann Rev Biochem 46: 299–329.PubMedCrossRefGoogle Scholar
  47. Santos, H., Moura, J. J. G., Moura, I., LeGall, J., and Xavier A. V., 1984, EurJ.Biochem. 141: 283–296.CrossRefGoogle Scholar
  48. St. Pierre, S., in Biomineralization, (Eds Mann, S., Webb, J., and Williams, R. J., P.), VCH Publ., Weinheim, 1989, 295–344.Google Scholar
  49. Steifel, E. I., and Watt, G. D., 1979, Nature 81–83.Google Scholar
  50. Theil, E. C., 1991, Adv. Enzymol. 63: 421–449.Google Scholar
  51. Thurgood, A. G. P., Davies, A. M., Greenwood, C., Guillemette, J. G., Smith, M., Mauk, A. G., and Moore, G. R., 1991, Eur. J. Biochem. 202: 339–347.PubMedCrossRefGoogle Scholar
  52. Timkovich, R., 1979, in: The Porphyrins 7 (Ed. D. Dolphin) Academic Press, London New York, 241–294. Treffry, A., Hirzmann, J., Yewdall, S. J., and Harrison, P. M., 1992, FEBS Lett 302: 108–112.Google Scholar
  53. Watt, G. D., Frankel, R. B., and Papaefthymiou, G. C., 1985, Proc. Natl. Acad. Sci. USA 82: 3640–3643.PubMedCrossRefGoogle Scholar
  54. Watt, G. D., Frankel, R. B., Papaefthymiou, G. C., Spartalian, K., and Steifel, E. I., 1986, Biochemistry 25: 4330–4336.CrossRefGoogle Scholar
  55. Wilms, J., Veerman, E. C. I., Konig, B. W., Dekker, H. L., van Gelder, B. F., 1981, Biochim Biophys Acta 637: 168–176.PubMedCrossRefGoogle Scholar
  56. Xavier, A. V., 1986, in Frontiers in Bioinorganic Chemistry (Ed.A.V.Xavier) VCH Publishers, 722–725. Xu, B., and Chasteen, N. D., 1991, J. Biol. Chem. 266::19965–19970. Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Geoffrey R. Moore
    • 1
  1. 1.Centre for Metalloprotein Spectroscopy and Biology School of Chemical SciencesUniversity of East AngliaNorwichNorway

Personalised recommendations