New Devices Made from Combining Silicon Microfabrication and Conducting Polymers

  • Elisabeth Smela
  • Olle Inganäs
  • Ingemar Lundström
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 2)

Abstract

Conducting polymers have been developed primarily for macroscopic use in batteries, electromagnetic shielding, coatings, displays, and solar cells (commercial applications have been discussed by Schoch and Saunders, 1992, and Studt, 1991). Chief among their attributes is their high conductivity in the doped state, which approaches that of copper (for an introduction, see Kaner and MacDiarmid, 1988; Reynolds, 1988; or Kanatzidis, 1990). This is due to the pattern of alternating single and double bonds, or conjugation, that gives them their other commonly used name, “conjugated polymers”. (See Figure 1.) Dopants added to the material donate (or remove) electrons from the chain, delocalizing the electron cloud in the immediate vicinity and distorting the bond lengths. This results in the formation of bond alternation domain walls (called solitons or polarons and bipolarons, depending on whether the material has a degenerate ground state) which have energy levels within the polymer’s band gap. At high doping levels, they can link together to form energy bands through which the electrons can travel. Charge is thought to hop between polymer chains Because conductivity is higher along a chain than between chains, stretching a sheet of conducting polymer, which orients the chains, results in conductivity anisotropies as high as 100–1000 (e.g. Schimmel et al., 1991).

Keywords

Polymer Electrolyte Conducting Polymer Schottky Diode Sacrificial Layer Hydraulic Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, M., Weakliem, H. A., Paiste, R. M., and Gaughan, K., 1988, Synth. Met. 26: 203CrossRefGoogle Scholar
  2. Assadi, A., Spetz, A., Willander, M., Svensson, C., Lundström, I., and Inganäs, 0., 1994, Sensors and Actuators B, 20: 71.Google Scholar
  3. Assadi, A., Svensson, C., Willander, M., and Inganäs, 0., 1988, Appl. Phys. Lett., 53: 195.CrossRefGoogle Scholar
  4. Assadi, A., Svensson, C., Willander, M., and Inganäs, 0., 1992, J. Appl. Phys., 72: 2900.Google Scholar
  5. Ataka, M., Omodaka, A., and Fujita, H., The 7th International Conference on Solid-State Sensors and Actuators, Transducers ‘83, Yokohama, Japan, June 7–10, 1993, Digest of Technical Papers, p. 38.Google Scholar
  6. Baker, C. K., Qiu, Y.J., and Reynolds, J. R., 1991, J. Phys. Chem., 95: 4446.CrossRefGoogle Scholar
  7. Bantikassegn, W., Dannetun, P., Inganäs, 0., and Salaneck, W. R., 1993, Thin Solid Films, 224: 232.CrossRefGoogle Scholar
  8. Bartlett, P. N., Archer, P. B. M., and Ling-Chung, S. K., 1989a, Sensors and Actuators, 19: 125CrossRefGoogle Scholar
  9. Bartlett, P. N., Archer, P. B. M., and Ling-Chung, S. K., 1989b, Sensors and Actuators, 19: 141.CrossRefGoogle Scholar
  10. Bartlett, P. N., Archer, P. B. M., and Ling-Chung, S. K., 1989c, Sensors and Actuators, 20: 287.CrossRefGoogle Scholar
  11. Baughman, R.H., Shacklette, L. W., Elsenbaumer, R. L., Plichta, E. J., and Becht, C., 1991, in MolecularGoogle Scholar
  12. Electronics, (Ed. Lazarev P.I.), Kluwer Academic Publishers, Dordrecht, pp. 267–89.Google Scholar
  13. Becker, E.W., Ehrfeld, W., Hagmann, P., Maner, A., and Munchmeyer, D., 1986, Microelectronic Eng., 4:35.Google Scholar
  14. Berggren, M., Gustafsson, G., Inganäs, O., Andersson, M. R., Hjertberg, T., and Wennerström, O., 1994, Appl. Phys. Lett., submitted.Google Scholar
  15. Berggren, M., Gustafsson, G., Inganäs, O., Andersson, M. R., Wennerström, O., and Hjertberg, T., 1994, Adv. Mat., 6: 488.CrossRefGoogle Scholar
  16. Bidan, G., 1992, Sensors and Actuators B, 6: 45.CrossRefGoogle Scholar
  17. Bilger, R., and Heinz, J., 1993, Synth. Met., 55–57: 1424CrossRefGoogle Scholar
  18. Braun, D., and Heeger, A. J., 1991, App/. Phys. Lett.58:1982. Google Scholar
  19. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Bums, P. L., and Holmes, A. B., 1990, Nature, 347: 39.CrossRefGoogle Scholar
  20. Burroughes, J. H., Jones, C. A., and Friend, R. H., 1988, Nature, 335: 137.CrossRefGoogle Scholar
  21. Cahalane, W., and Labes, M. M., 1989, Chem. Mat., 1: 519.CrossRefGoogle Scholar
  22. Cai, Z., Lei, J., Liang, W., Menon, V., and Martin, C. R., 1991, Chem. Mater., 3: 960.Google Scholar
  23. Clery, D., 1994, Science263:1700. Google Scholar
  24. Coghlan, A., New Scientist, 1994, Feb. 5: 20.Google Scholar
  25. Delapierre, G., 1989, Sensors and Actuators, 17: 123.CrossRefGoogle Scholar
  26. Engelmann, G., Ehrmann, O., Leutenbauer, R., Schmitz, H., and Reichl, H., 1993, MME’93 Workshop Digest, September 7–8, Neuchatel, p. 85.Google Scholar
  27. Frazier, A.B., and Allen, M. G., 1993, J. Microelectromech. Syst., 2: 87.CrossRefGoogle Scholar
  28. Fujii, M., Arii, K., and Yoshini, K., 1993, Synth. Met., 55–57: 1159.CrossRefGoogle Scholar
  29. Gamier, F., Horowitz, G., Peng, X., and Fichou, D., 1990, Adv. Mater. 2: 592.CrossRefGoogle Scholar
  30. Granström, M., and Inganäs, 0., 1993, Synth. Met. 55–57: 460.CrossRefGoogle Scholar
  31. Greenham, N C, Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., 1993, Nature 365: 628.CrossRefGoogle Scholar
  32. Grem, G., Leditzky, G., Ullrich, B., and Leising, G., 1992, Adv. Mat. 4: 36.CrossRefGoogle Scholar
  33. Guckel, H., Christenson, T. R., Skrobis, K. J., Denton, D. D., Choi, B., Lovell, E. G., Lee, J. W., Bajikar, S. S., and Chapman, T. W., Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, June 4–7 1990, p. 118.Google Scholar
  34. Gustafsson, G., Cao, Y, Treacy, G. M., Klavetter, F., Colaneri, M., and Heeger, A. J., 1992, Nature 357: 477.CrossRefGoogle Scholar
  35. Gustafsson, J. C., Inganäs, O., and Anderson, A. M., 1994, Synth. Met. 62: 17.CrossRefGoogle Scholar
  36. Heinze, J., 1991, Synth. Met. 41–43: 2805.Google Scholar
  37. Heinze, J., and Dietrich, M., 1989, Mat. Sci. Forum 42: 63.Google Scholar
  38. Hunter, LW., and Lafontaine, S., Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, Hiton Head, June 22–25 1992, p. 178.Google Scholar
  39. Inganäs, 0., Gustafsson, G., and Svensson, C., 1991, Synth. Met. 41–43: 1095.Google Scholar
  40. James, A. M., and Lord, M. P., Macmillan’s Chemical and Physical Data, Macmillan Press Ltd., London, 1992, pp. 20, 22.Google Scholar
  41. Kanatzidis, M. G., 1990, Chem and Eng. News, Dec. 3: 36.Google Scholar
  42. Kaner, R. B., and MacDiarmid, A.G., 1988, Sci. Amer. 2: 60–65.Google Scholar
  43. Kankare, J., and Lukkari, J., 1993, Synth. Met. 55–57: 1305.CrossRefGoogle Scholar
  44. Krishna, V., Ho, Y-H., Basak, S., and Rajeshwar, K., 1991, J. Am. Chem. Soc. 113: 3325.CrossRefGoogle Scholar
  45. Li, Y., and Qian, R., 1989, Synth. Met. 28: C127.CrossRefGoogle Scholar
  46. Lukkari, J, Heikkila, L., Alanko, M., and Kankare, J., 1993, Synth. Met. 55–57: 1311.CrossRefGoogle Scholar
  47. Martin, C. R., 1991, Adv. Mat. 3: 457.CrossRefGoogle Scholar
  48. Martin, C. R., Van Dyke, L. S., Cai, Z., and Liang, W., 1990, J. Am. Chem. Soc. 112: 8976.CrossRefGoogle Scholar
  49. Mastragostino, M., Arbizzani, C, Bongini, A., Barbarella, G., and Zambianchi, M., 1993, Electrochimica Acta 38: 135.CrossRefGoogle Scholar
  50. Murthy, N.S., Shacklette, L. W., and Baughman, R. H., 1987, J. Chem. Phys. 87: 2346.Google Scholar
  51. Naoi, K., Lien, M., and Smyrl, W. H., 1991, J. Electrochem. Soc. 138: 440.CrossRefGoogle Scholar
  52. Orata, D., and Buttry, D. A., 1987, J. Am. Chem. Soc. 109: 3574.CrossRefGoogle Scholar
  53. Osada, Y., 1987, Adv. Polym. Sci. 82: 1.CrossRefGoogle Scholar
  54. Otero, T. F., and de Larreta, E., 1988,Synth. Met.. 26:79.Google Scholar
  55. Otero, T. F., and Rodriguez, J., 1993, Synth. Met.. 55–57: 1436.Google Scholar
  56. Paul, E. W., Rico, A. J., and Wrighton, M. S., 1985,1 Phys. Chem. 89: 1441.Google Scholar
  57. Pearce, T. C., Gardner, J. W., Friel, S., Bartlett, P. N., and Blair, N., 1993, Analyst, 118: 371.CrossRefGoogle Scholar
  58. Pei, Q., and Inganäs, O., 1992a, Adv. Mat. 4: 277.CrossRefGoogle Scholar
  59. Pei, Q., and Inganäs, O., 1992b, J. Phys. Chem. 96: 10507.CrossRefGoogle Scholar
  60. Pei, Q., and Inganäs, O., 1993a, Synth. Met. 55–57: 3724.CrossRefGoogle Scholar
  61. Pei, Q., and Inganäs, O., 1993b, J. Phys. Chem. 97: 6034.CrossRefGoogle Scholar
  62. Pei, Q., and Inganäs, 0., 1993c, Solid State Ionics 60: 161.CrossRefGoogle Scholar
  63. Pei, Q., and Inganäs, O., 1993d, Synth. Met. 57: 3718.CrossRefGoogle Scholar
  64. Pei, Q., and Inganäs, 0., 1993e, Synth. Met. 55–57: 3730.CrossRefGoogle Scholar
  65. Penner, R.M., and Martin, C.R., 1986, J. Electrochem. Soc. 133: 2206.CrossRefGoogle Scholar
  66. Pister, K.S.J., Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, June 22–25 1992, p. 136.Google Scholar
  67. Reynolds, J.R., 1988, Chemtech 7: 440.Google Scholar
  68. Schimmel, Th., Gläser, D., Schwoerer, M., and Naarmann, H., 1991, in Conjugated Polymers, (Eds. J.L. Brédas and R. Silbey), Kluwer Academic Publishers, Dordrecht, p. 49.Google Scholar
  69. Schoch, K.F., and Saunders, H.E., 1992, IEEE Spectrum 6: 52–55.CrossRefGoogle Scholar
  70. Scrosati, B.,1988, Prog. Solid St. Chem. 18: 1.Google Scholar
  71. Smela, E., and Inganäs, O., in preparation.Google Scholar
  72. Smela, E., Inganäs, O., and Lundström, I., 1993a, J. Micromech. Microeng. 3: 203.CrossRefGoogle Scholar
  73. Smela, E., Inganäs, 0., Pei, Q., and Lundström, I., 1993b, Adv. Mat. 5: 630.CrossRefGoogle Scholar
  74. Smela, E., Zuccarello, G., Kariis, H., Uvdal, K., Inganäs, 0., Liedberg, B., and Lundström, I., in preparation Sperling, L.H., 1986, Introduction to Physical Polymer Science, John Wiley and Sons, New York, pp. 227, 229.Google Scholar
  75. Street, G.B., in Handbook of Conducting Polymers, (Ed. Skotheim T. A. ), Marcel Dekker, Inc., New York, 1986, 265–91.Google Scholar
  76. Streetman, B. G., 1980, Solid State Electronic Devices, 2nd Ed., Prentice Hall, Englewood Cliffs. Studt, T., 1991, RandD Mag. 10:94.Google Scholar
  77. Thakeray, J. W., White, H. S., and Wrighton, M. S., 1985, J. Phys. Chem., 89: 5133.CrossRefGoogle Scholar
  78. Tomozawa, H., Braun, D., Phillips, S., Heeger, A. J., and Kroemer, H., 1987, Synth. Met.. 22:63.Google Scholar
  79. Tsumura, A., Koezuka, H., and Ando, T., 1986, Appl. Phys. Lett.. 49: 1210.Google Scholar
  80. West, K., Jacobsen, T., Zachau-Christiansen, B., Careem, M. A., and Skaarup, S., 1993, Synth. Met., 5557: 1412.CrossRefGoogle Scholar
  81. Wrighton, M. S., 1986, Science 231: 32.PubMedCrossRefGoogle Scholar
  82. Yoshino, K., Nakao, K., Morita, S., and Onoda, M., 1989a, Japn. J. App. Phys. 28: 2027.CrossRefGoogle Scholar
  83. Yoshino, K., Nakao, K., Onoda, M., and Sugimoto, R., 1989b, Solid State Comm. 70: 609.CrossRefGoogle Scholar
  84. Younse, J.M., 1993, IEEE Spectrum, 11: 27.CrossRefGoogle Scholar
  85. Zotti, G., 1992, Synth. Met. 51: 373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Elisabeth Smela
    • 1
  • Olle Inganäs
    • 1
  • Ingemar Lundström
    • 1
  1. 1.Department Physics and Measurement TechnologyLinköping Institute of TechnologyLinköpingSweden

Personalised recommendations