In Vivo Biology of APP and its Homologues

  • Sangram S. Sisodia
  • Gopal Thinakaran
  • Cornelia S. von Koch
  • Hilda H. Slunt
  • A. Jane I. Roskams
  • Cheryl A. Kitt
  • Eliezer Masliah
  • Vassilis E. Koliatsos
  • Peter R. Mouton
  • Lee J. Martin
  • Randall R. Reed
  • Gabrielle V. Ronnett
  • Hui Zheng
  • Lex H. T. Van der Ploeg
  • Donald L. Price
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

A principal pathological feature of Alzheimer’s disease is the deposition of ß-amyloid protein (Aß) in brain parenchyma.1–3 Aß, an ~4-kD polypeptide, is derived from larger type I integral membrane glycoproteins, termed the amyloid precursor proteins (APP).4–9 APP is a member of a family of homologous amyloid precursor-like proteins (APLPs), including APLP110 and APLP2.11–13 APP, APLP1, and APLP2 show considerable homology in the N-terminal cysteine-rich domain, the cytoplasmic tail and transmembrane sequences, but the APLPs differ from APP by the conspicuous absence of the Aß region. APP homologues have also been identified in C. elegans (apl-l)14 and Drosophila (appl),15 and these molecules lack the Aß region as well. Flies with a deleted APPL gene are viable and have a defective fast phototaxis response, a behavior that is partially rescued by the introduction of human APP cDNA. The biological functions of APP and the APLPs in the mammalian nervous system are far from clear, although several studies have suggested that APP play roles in cell-cell or cell-matrix interactions,16–18 calcium hemostasis,19 growth promoting activities,20 and the formation/maintenance of synapses in vivo. 21 More recently, investigations in cultured cells22 and in transgenic animals23 have provided support to the notion that APP is neuroprotective.

Keywords

Olfactory Bulb Amyloid Precursor Protein Olfactory Epithelium Human Amyloid Precursor Protein Chondroitin Sulfate Glycosaminoglycan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.G. Glenner and C.W. Wong, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120:885–890 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    G.G. Glenner and C.W. Wong, Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun. 122:1131–1135 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    C.L. Masters, G. Simms, N.A. Weinman, G. Multhaup, B.L. McDonald, and K. Beyreuther, Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. USA 82:4245–4249 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Kang, H.-G. Lemaire, A. Unterbeck, J.M. Salbaum, C.L. Masters, K.-H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Müller-Hill, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325:733–736 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, and H. Ito, Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature 331:530–532 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Ponte, P. Gonzalez-DeWhitt, J. Schilling, J. Miller, D. Hsu, B. Greenberg, K. Davis, W. Wallace, I. Lieberburg, F. Fuller, and B. Cordell, A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors, Nature 331:525–532 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    R.E. Tanzi, A.I. McClatchey, E.D. Lampert, L. Villa-Komaroff, J.F. Gusella, and R.L. Neve, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature 331:528–530 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    T.E. Golde, S. Estus, M. Usiak, L.H. Younkin, and S.G. Younkin, Expression of β amyloid protein precursor mRNAs: recofnition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR, Neuron 4:253–267 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    G. König, U. Mönning, C. Czech, R. Prior, R. Banati, U. Schreiter-Gasser, J. Bauer, C.L. Masters, and K. Beyreuther, Identification and differential expression of a novel alternative splice isoform of the βA4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells, J. Biol. Chem. 267:10804–10809 (1992).PubMedGoogle Scholar
  10. 10.
    W. Wasco, K. Bupp, M. Magendantz, J.F. Gusella, R.E. Tanzi, and F. Solomon, Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid-beta-protein precursor, Proc. Natl. Acad. Sci. USA 89:10758–10762 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    C.A. Sprecher, F.J. Grant, G. Grimm, P.J. O’Hara, F. Norris, K. Norris, and D.C. Foster, Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family, Biochemistry 32:4481–4486 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    W. Wasco, S. Gurubhagavatula, M.d. Paradis, D.M. Romano, S.S. Sisodia, B.T. Hyman, R.L. Neve, and R.E. Tanzi, Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid β protein precursor, Nature Genetics 5:95–99 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    H.H. Slunt, G. Thinakaran, C. von Koch, A.C.Y. Lo, R.E. Tanzi, and S.S. Sisodia, Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP), J. Biol Chem. 269:2637–2644 (1994).PubMedGoogle Scholar
  14. 14.
    I. Daigle and C. Li, Apl-1 a Caenorhabditis elegans gene encoding a protein related to the human β-amyloid protein precursor, Proc. Natl. Acad. Sci. USA 90:12045–12049 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    D.R. Rosen, L. Martin-Morris, L. Luo, and K. White, A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor, Proc. Natl. Acad. Sci. USA 86:2478–2482 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    B.D. Shivers, C. Hilbich, G. Multhaup, M. Salbaum, K. Beyreuther, and P.H. Seeburg, Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact, EMBO J. 7:1365–1370 (1988).PubMedGoogle Scholar
  17. 17.
    D. Schubert, L.-W. Jin, T. Saitoh, and G. Cole, The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion, Neuron 3:689–694 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    F.G. Klier, G. Cole, W. Stalleup, and D. Schubert, Amyloid β-protein precursor is associated with extracellular matrix, Brain Res. 515:336–342 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    M.P. Mattson, S.W. Barger, B. Cheng, I. Lieberburg, V.L. Smith-Swintosky, and R.E. Rydel, β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease, Trends Neurosci. 16:409–414 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Saitoh, M. Sundsmo, J.-M. Roch, T. Kimura, G. Cole, D. Schubert, T. Oltersdorf, and D.B. Schenk, Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts, Cell 58:615–622 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    L. Mucke, E. Masliah, W.B. Johnson, M.D. Ruppe, M. Alford, E.M. Rockenstein, S. Forss-Petter, M. Pietropaolo, M. Mallory, and C.R. Abraham, Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice, Brain Res. 666:151–167 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    M.P. Mattson, B. Cheng, A.R. Culwell, F.S. Esch, I. Lieberburg, and R.E. Rydel, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein, Neuron 10:243–254 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Mucke, C.R. Abraham, M.D. Ruppe, E.M. Rockenstein, S.M. Toggas, M. Mallory, M. Alford, and E. Masliah, Protection against HIV-1 gp120-induced brain damage by neuronal expression of human amyloid precursor protein (hAPP), J. Exp. Med, in press.Google Scholar
  24. 24.
    H. Zheng, M.-H. Jiang, M.E. Trumbauer, D.J.S. Sirinathsinghji, R. Hopkins, D.W. Smith, R.P. Heavens, G.R. Dawson, S. Boyce, M.W. Conner, K.A. Stevens, H.H. Slunt, S.S. Sisodia, H.Y. Chen, and L.H.T. Van der Ploeg, β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity, Cell, in press.Google Scholar
  25. 25.
    R. Sandbrink, C.L. Masters, and K. Beyreuther, Similar alternative splicing of a non-homologous domain in βA4-amyloid protein precursor-like proteins, J. Biol. Chem. 269:14227–14234 (1994).PubMedGoogle Scholar
  26. 26.
    G. Thinakaran and S.S. Sisodia, Amyloid precursor-like protein 2 (APLP2) is modified by the addition of chondroitin sulfate glycosaminoglycan at a single site, J. Biol Chem. 269:22099–22104 (1994).PubMedGoogle Scholar
  27. 27.
    J. Shioi, J.P. Anderson, J.A. Ripellino, and N.K. Robakis, Chondroitin sulfate proteoglycan form of the Alzheimer’s β-amyloid precursor, J. Biol. Chem. 267:13819–13822 (1992).PubMedGoogle Scholar
  28. 28.
    J. Shioi, L.M. Refolo, S. Efthimiopoulos, and N.K. Robakis, Chondroitin sulfate proteoglycan form of cellular-and cell-surface Alzheimer amyloid precursor, Neurosci. Lett. 154:121–124 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sangram S. Sisodia
    • 1
    • 4
  • Gopal Thinakaran
    • 1
    • 4
  • Cornelia S. von Koch
    • 3
    • 4
  • Hilda H. Slunt
    • 4
  • A. Jane I. Roskams
    • 2
    • 3
  • Cheryl A. Kitt
    • 1
    • 4
  • Eliezer Masliah
    • 6
  • Vassilis E. Koliatsos
    • 1
    • 2
    • 3
    • 4
  • Peter R. Mouton
    • 1
    • 4
  • Lee J. Martin
    • 1
    • 3
    • 4
  • Randall R. Reed
    • 2
    • 3
    • 5
  • Gabrielle V. Ronnett
    • 2
    • 3
  • Hui Zheng
    • 7
  • Lex H. T. Van der Ploeg
    • 7
  • Donald L. Price
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Neuropathology LaboratoryThe Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Howard Hughes Medical Institute, Department of Molecular Biology & GeneticsThe Johns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Departments of Neuroscience and PathologyUniversity of CaliforniaSan DiegoUSA
  7. 7.Merck Research LaboratoriesRahwayUSA

Personalised recommendations