Eicosanoids pp 117-125 | Cite as

N-3 Fatty Acids. Antithromboxane Activity. Effects on Redox Status of Blood Cells

  • M. Lagarde
  • M. Croset
  • E. Véricel
  • G. C. Le Breton
  • A. F. Prigent
  • C. Calzada
Chapter
Part of the NATO ASI Series book series (NSSA, volume 283)

Abstract

N-3 fatty acids are polyunsaturated ones that all derive from linolenic acid (18:3n-3) in animals. Together with linoleic acid (18:2n-6), that cannot be synthesized in animals, 18:3n-3 is considered as an essential fatty acid, especially in being the precursor of docosahexaenoic acid (DHA or 22:6n-3), the main polyunsaturated fatty acid (PUFA) of the cerebrovascular system (Salem, 1989). A great interest in n-3 fatty acids also consists in their ability to slow down the arachidonic acid cascade in blood and vascular cells, resulting in a potential prevention of cardiovascular diseases (Leaf & Weber, 1988). The present article will focus on the antithromboxane activity of n-3 fatty acids from marine oil and on their effects as prooxidant/antioxidant molecules.

Keywords

Arachidonic Acid Human Platelet Arachidonic Acid Cascade Prostaglandin Endoperoxide Phospholipid Transfer Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrand M., Pageaux J.F., Lagarde M. and Dolmazon R. Conformational analysis of isolated docosahexaenoic acid (22:6n-3) and its 14 (S) and 11 (S) hydroxy derivatives by force field calculations. Chem. Phys. Lipids, 1994, 72: 7–17.CrossRefGoogle Scholar
  2. Baidassare J.J., Tarver A.P., Henderson P.A., Mackin W.N., Sahagan b. and Fisher G.J. Reconstitution of thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-b and GTP-binding protein Gq. Biochem J., 1993, 291: 235–240.Google Scholar
  3. Bayon Y., Croset M., Daveloose D., Guerbette F., Chirouze V., Viret J., Kader J.C. and Lagarde M. Effect of specific phospholipid molecular species incorporated in human platelet membranes on thromboxane A2/prostaglandin H2 receptors. J. Lipid. Res., 1995, 36: 47–56.PubMedGoogle Scholar
  4. Bourre J.M., Pascal G., Durand G., Masson M., Dumont O. and Piciotti M. Alterations in the fatty acid composition of rat brain cells induced by a diet devoid of n-3 fatty acids. J. Neurochem., 1984, 43: 342–348.PubMedCrossRefGoogle Scholar
  5. Brown J.E. and Wahle K.W.J. Effect of fish-oil and vitamin E supplementation on lipid peroxidation and whole-blood aggregation in man. Clin. Chim. Acta, 1990, 193: 147–156.PubMedCrossRefGoogle Scholar
  6. Bryant R.W., Simon T.C. and Bailey J.M. Role of glutathione peroxidase and hexose monophosphate shunt in the platelet lipoxygenase pathway. J. Biol. Chem., 1982, 257: 14937–14943.PubMedGoogle Scholar
  7. Calzada C., Véricel E. and Lagarde M. Decrease in platelet reduced glutathione increases lipoxygenase activity and decreases vitamin E. Lipids, 1991, 26: 696–699.PubMedCrossRefGoogle Scholar
  8. Calzada C., Véricel E. and Lagarde M. Lower levels of lipid peroxidation in human platelets incubated with eicosapentaenoic acid. Biochim. Biophys. Acta, 1992, 1127: 147–152.PubMedCrossRefGoogle Scholar
  9. Clarke S.D. and Jump D.B. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu. Rev. Nutr., 1994, 14: 83–98.PubMedCrossRefGoogle Scholar
  10. Croset M. and Lagarde M. Stereospecific inhibition of PGH2-induced platelet aggregation by lipoxygenase products of eicosaenoic acids. Biochem. Biophys. Res. Commun, 1983, 112: 878–883.PubMedCrossRefGoogle Scholar
  11. Croset M. and Lagarde M. In vitro incorporation and metabolism of eicosapentaenoic and docosahexaenoic acids in human platelets. Effects on aggregation. Thromb. Haemost, 1986, 56: 57–62.Google Scholar
  12. Croset M., Bayon Y. and Lagarde M. Incorporation and turnover of eicosapentaenoic and docosahexaenoic acids in human blood platelets in vitro. Biochem. J., 1992, 281: 309–316.PubMedGoogle Scholar
  13. Croset M., Sala A., Folco G. and Lagarde M. Inhibition by lipoxygenase products of TXA2-like responses of platelets and vascular smooth muscle. Biochem. Pharmacol., 1988, 37: 1275–1280.PubMedCrossRefGoogle Scholar
  14. Croset M., Véricel E., Rigaud M., Hans M., Courpron Ph., Dechavanne M. and Lagarde M. Functions and tocopherol content of blood platelets from elderly people after low intake of purified eicosapentaenoic acid. Thrombos. Res., 1990, 57: 1–12.CrossRefGoogle Scholar
  15. Douady D., Guerbette F., Grosbois m. and Kader J.C. Purification of a basic phospholipid transfer protein from maize seads using a two-step chromatographic procedure. Physiol. Veg., 1985, 232: 373–380.Google Scholar
  16. Driss F., Véricel E., Lagarde M., Dechavanne M. and Darcet Ph. Inhibition of platelet aggregation and thromboxane synthesis after intake of small amount of eicosapentaenoic acid. Thrombos. Res., 1984, 36: 389–396.CrossRefGoogle Scholar
  17. Dyerberg J. and Bang H.O. Lipid metabolism, atherogenesis, and haemostasis in Eskimos: the role of the prostaglandin-3 family. Haemostasis, 1979, 8: 227–233.PubMedGoogle Scholar
  18. Fonlupt P., Croset M. and Lagarde M. 12-HETE inhibits the binding of PGH2/TXA2 receptor ligands in human platelets. Thrombos. Res., 1991, 63: 239–248.CrossRefGoogle Scholar
  19. Hamberg M., Svensson J. and Samuelsson B. Thromboxane: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. USA, 1975, 72: 2994–2998.CrossRefGoogle Scholar
  20. Harats D., Dabach Y., Hollander G. Bennaim M., Schwartz R., Berry E.m., Stein O. and Stein Y. Fish oil ingestion in smokers and nonsmokers enhances peroxidation of plasma lipoproteins. Atherosclerosis, 1991, 90: 127–139.PubMedCrossRefGoogle Scholar
  21. Hecker M. and Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J. Biol. Chem., 1989, 264: 141–150.PubMedGoogle Scholar
  22. Heemskerk J.W.M., Feïjge M.A.H., Kester A. and Hornstra G. Influence of dietary fatty acids on membrane fluidity and activation of rat platelets. Biochem. J., 1991, 278: 399–404.PubMedGoogle Scholar
  23. Hirita M., Hayashi Y., Ushikubi F., Yokota Y., Kageyama R., Nakanishi S. and Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 1991, 349: 617–620.CrossRefGoogle Scholar
  24. Joulain C., Prigent A.F., Némoz G. and Lagarde M. Increased glutathione peroxidase activity in human blood mononuclear cells upon in vitro incubation with n-3 fatty acids. Biochem. Pharmacol., 1994, 47: 1315–1323.PubMedCrossRefGoogle Scholar
  25. Kulmacz R.J. and Lands W.E.M. Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins, 1983, 25: 531–540.PubMedGoogle Scholar
  26. Lagarde M. Metabolism of fatty acids by platelets and the functions of various metabolites in mediating platelet function. Progr. Lipid Res., 1988, 27: 135–152.CrossRefGoogle Scholar
  27. Lagarde M., Véricel E., Chabannes B. and Prigent A.F. Blood cell redox status and fatty acids. Prostagland. Leuk. Essent. Fatty, 1995, 52: 159–161.CrossRefGoogle Scholar
  28. Leaf A. and Weber P.C. Cardiovascular effects of n-3 fatty acids. New Engl. Med., 1988, 318: 549–557.CrossRefGoogle Scholar
  29. Lefer A.M. Eicosanoids as mediators of ischemia and shock. Fed. Froc, 1985, 44: 275–280.Google Scholar
  30. Meskini N., Nemoz G., Chapuy P., Haond P., Pageaux J.F., Véricel E., Lagarde M. and Prigent A.F. Glutathione peroxidase activity and metabolism of arachidonic acid in peripheral blood mononuclear cells from elderly subjects. Clin. Sci., 1993, 85: 203–211.PubMedGoogle Scholar
  31. Moncada S. and Vane J.R. The role of prostacyclin in vascular tissue. Fed. Proa, 1979, 38: 66–71.Google Scholar
  32. Neufeld E.J., Wilson D.B., Sprecher H. and Majerus P.W. High affinity esterification of eicosanoid precursor fatty acids by platelets. J. Clin. Invest., 1983, 72: 214–220.PubMedCrossRefGoogle Scholar
  33. Parent CA., Lagarde M., Venton D.L. and Le Breton G.C. Selective modulation of the human platelet thromboxane A2/prostaglandin H2 receptor by eicosapentaenoic and docosahexaenoic acids in intact and solubilized platelet membranes. J. Biol. Chem., 1992, 67: 6541–6547.Google Scholar
  34. Raz A., Minkes M. and Needleman P. Endoperoxides and thromboxanes structural determinants for platelet aggregation and vasoconstriction. Biochim. Biophys. Acta, 1977, 488: 305–311.PubMedCrossRefGoogle Scholar
  35. Rey C., Véricel E., Némoz G., Chen W., Chapuy P. and Lagarde M. Purification and characterization of glutathione peroxidase from human blood platelets. Age-related changes in the enzyme. Biochim. Biophys. Acta, 1994, 1226: 219–224.CrossRefGoogle Scholar
  36. Salem N. Omega-3 fatty acids: molecular and biochemical aspects. In: New Protective Roles for Selected Nutrients. Alan R. Liss, Inc., 1989, 109-228.Google Scholar
  37. Samuelsson B., Hamberg M., Malmsten C. and Svensson J. The role of prostaglandin endoperoxides and thromboxanes in platelet aggregation. In: Adv. Thrombox. Res. Edited by B. Samuelsson and R. Paoletti, Raven Press N.Y 2, 1976, 737–746.Google Scholar
  38. Scheurlen M., Kirchner M., Clemens R. and Jaschonek K. Fish oil preparations rich in docosahexaenoic acid modify platelet responsiveness to prostaglandin-endoperoxide/thromboxane A2 receptor agonists. Biochem. Pharmacol., 1993, 46: 245–249.PubMedCrossRefGoogle Scholar
  39. Smith W.L. Prostanoid biosynthesis and mechanisms of action. Am. J. Physiol., 1992, 263: 181–191.Google Scholar
  40. Smith W.L., Eling T.E., Kulmacs R.J., Marnett L.J. and Tsai A.L. Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase. Biochemistry, 1992, 31: 3–7.PubMedCrossRefGoogle Scholar
  41. Sprecher H. Biochemistry of essential fatty acids. Progr. Lipid Res., 1981, 20: 12–22.Google Scholar
  42. Swann P.G., Parent C.A., Croset M., Fonlupt P., Lagarde M., Venton D.L. and Le Breton G.C. Enrichment of platelet phospholipids with eicosapentaenoie acid and docosahexaenoic acid inhibits thromboxane A2/prostaglandin H2 receptor binding and function. J. Biol. Chem., 1990, 265: 21692–21697.PubMedGoogle Scholar
  43. Swann P.G., Venton D.L. and Le Breton G.C. Eicosapentaenoie acid and docosahexaenoic acid inhibit thromboxane A2/prostaglandin H2 receptor binding and function. FEBS Lett., 1989, 243: 244–246.PubMedCrossRefGoogle Scholar
  44. Véricel E., Croset M., Sedivy P., Courpron P.H., Dechavanne M. and Lagarde M. Platelets and aging I-aggregation, arachidonate metabolism and antioxidant status. Thrombos. Res., 1988, 49: 331–342.CrossRefGoogle Scholar
  45. Véricel E., Lagarde M., Mendy F., Courpron P.H. and Dechavanne M. Effects of linoleic acid and gamma-linolenic acid intake on platelet functions in elderly people. Thrombos. Res., 1986, 42: 499–509.CrossRefGoogle Scholar
  46. Véricel E., Rey C., Calzada C., Haond P., Chapuy P.H. and Lagarde M. Age-related changes in arachidonic acid peroxidation and glutathione-peroxidase activity in human platelets. Prostaglandins, 1992, 43: 75–85.PubMedGoogle Scholar
  47. Voss A., Reinhart M., Sankarappa S. and Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem., 1991, 266: 19995–20000.PubMedGoogle Scholar
  48. Yamamoto Y., Kamiya K. and Terao S. Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction. J. Med. Chem., 1993, 36: 820–825.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. Lagarde
    • 1
  • M. Croset
    • 1
  • E. Véricel
    • 1
  • G. C. Le Breton
    • 1
    • 2
  • A. F. Prigent
    • 1
  • C. Calzada
    • 1
  1. 1.Chimie Biologique INSA-LyonINSERM U352VilleurbanneFrance
  2. 2.Department of PharmacologyUniversity of IllinoisChicagoUSA

Personalised recommendations