Oxidative Stress with Emphasis on the Role of LAMMA in Parkinson’s Disease
Abstract
Until recently, the causes and underlying pathogenetic mechanisms responsible for cell degeneration in the neurodegenerative disorders have remained obscure. Neuro-pathological analysis have revealed the presence of cytoskeletal markers such as the Lewy body and neurofibrillary tangle, which are associated with the neuronal degeneration, but the cellular events underlying these changes were unknown. More recently, it has been proposed that oxidative stress may be a unifying factor in the pathogenesis of the major neurodegenerative diseases (Olanow, 1993). This hypothesis proposes that an increase in free radicals due to excess formation or diminished antioxidant defenses is responsible for damage to critical biological molecules such as cytoskeletal proteins, membrane lipids, and DNA. This chapter will review the evidence that oxidative stress contributes to cell damage in Parkinson’s disease (PD), with particular emphasis on the role of laser microprobe mass analysis (LAMMA) and the therapeutic implications of these observations.
Keywords
Multiple System Atrophy Globus Pallidus Peroxynitrous Acid Parkinsonian Brain Laser Microprobe Mass AnalysisPreview
Unable to display preview. Download preview PDF.
References
- Anglade, P., Michel, P., Marquez, J., Mouatt-Prient, A., Ruberg, M., Hirsch, E. C., and Agid, Y., 1995, Apoptotic degeneration of nigral dopaminergic neurons in Parkinson’s disease, Proc. Soc. Neurosci. 21:489–493.Google Scholar
- Aisen, P., 1992, Entry of iron into cells: A new role for the transferrin receptor in modulating iron release from transferrin, Ann. Neurol 32:62–68.CrossRefGoogle Scholar
- Ansari, K. S., Yu, P. H., Kruck, T. P., and Tatton, W. G., 1993, Rescue of axotomized immature rat facial motorneurons by R(-)-deprenyl: Stereospecificity and independence from monoamine oxidase inhibition, J. Neurosci. 13:4042–53.PubMedGoogle Scholar
- Aschner, M., and Gannon, M., 1994, Manganese (Mn) transport across the rat blood-brain barrier; saturable and transferrin dependent transport mechanisms, Brain Res. Bull. 33:345–349.PubMedCrossRefGoogle Scholar
- Brouillet, E. P., Shinobu, L., McGarvey, U., Hochberg, F., and Beal, M. F., 1993, Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism, Exp. Neurol. 120:89–94.PubMedCrossRefGoogle Scholar
- Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R., and Cox, D. W., 1993, The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene, Nat. Genet. 5:327–337.PubMedCrossRefGoogle Scholar
- Calne, D. B., Chu, N. S., Hung, C. C., Lu, C. S., and Olanow, C. W., 1994, Manganism and idiopathic parkinsonism; similarities and differences, Neurology 44:1583–1586.PubMedCrossRefGoogle Scholar
- Chandra, S. V., and Shukla, G. S., 1981, Concentrations of striatal catecholamines in rats given manganese chloride through drinking water, J. Neurochem. 32:683–687.CrossRefGoogle Scholar
- Chiba, K., Trevor, A., and Castagnoli, N. Jr., 1984, Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase, Biochem. Biophys. Res. Comm. 120:457–478.CrossRefGoogle Scholar
- Cohen, G., Pasik, P., Cohen, B., Leist, L., Mytilingou, C., and Yahr, M. D., 1985, Pargyline and deprenyl prevent the neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in monkeys, Eur. J. Pharmacol. 106:209–210.CrossRefGoogle Scholar
- Connor, J. R., Snyder, B. S., Arosio, P., Loeffler, D. A., and Le Witt, P., 1995, A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains, J. Neurochem. 65:717–724.PubMedCrossRefGoogle Scholar
- Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., Marsden, C. D., 1989a, Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease, J. Neurochem. 52:1830–1836.PubMedCrossRefGoogle Scholar
- Dexter, D. T., Carter, C. J., Wells, F R., Javoy-Agid, F., Agid, Y, Lees, A., Jenner, P., and Marsden, C. D., 1989b, Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem. 52:381–389.PubMedCrossRefGoogle Scholar
- Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y, Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D., 1991, Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia, Brain 114:1953–1975.PubMedCrossRefGoogle Scholar
- Dexter, D. T., Holley, A. E., Flitter, W D., Slater, T. F., Wells, F R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D., 1994a, Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study, Movement Disorders 9:92–97.PubMedCrossRefGoogle Scholar
- Dexter, D. T., Sian, J., Rose, S., Hindmarsh, J. G., Mann, V. M., Cooper, J. M., Wells, F. R., Daniel, S. E., Lees, A. J., Schapira, A. H. V., Jenner, P., and Marsden, C. D., 1994b, Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease, Ann. Neurol. 35:38–44.PubMedCrossRefGoogle Scholar
- DiMauro, S., 1993, Mitochondrial involvement in Parkinson’s disease: the controversy continues, Neurology 43:2170–2172.PubMedCrossRefGoogle Scholar
- Donaldson, J., Labella, F S., and Gesser, D., 1981, Enhanced autooxidation of dopamine as a possible basis of manganese neurotoxicity, Neurotoxicology 2:53–64.PubMedGoogle Scholar
- Good, P. F., Katz, R. N., and Perl, D. P., 1991, Calculation of intraneuronal concentration of aluminum in neurofibrillary tangle (NFT) bearing and NFT free hippocampal neurons of Alzheimer’s disease using laser microprobe mass analysis (LAMMA), J. Neuropathol. Exp. Neurol. 50:300.Google Scholar
- Good, P. F., Olanow, C. W, and Perl, D. P., 1992, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: A LAMMA study, Brain Res. 593:343–346.PubMedCrossRefGoogle Scholar
- Good, P. F., and Perl, D. P., 1994, A quantitative comparison of aluminum concentration in neurofibrillary tangles of Alzheimer’s disease and parkinsonian dementia complex of Guam by laser microprobe mass analysis, Neurobiol. Aging 15:S28.Google Scholar
- Good, P. F., Werner, P., Hsu, A., Olanow, C. W., and Perl, D. P., 1996, Evidence for neuronal oxidative damage in Alzheimer’s disease, Am. J. Path. 149:21–28.PubMedGoogle Scholar
- Gurney, M. E., Pu, H., Chiu, A. Y, Dal Canto, M. C., Polchow, C. Y, Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y W, Deng, H.-X., Chen, W, Zhai, P., Sufit, R. L., and Siddique, T., 1994, Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation, Science 264:1772–1775.PubMedCrossRefGoogle Scholar
- Gutteridge, J. M. C., Quinlan, G. J., Clark, I., and Halliwell, B., 1985, Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts, Biochem. Biophys. Acta 835:441–447.PubMedCrossRefGoogle Scholar
- Hallgren, B., and Sourander, P., 1958, The effect of age on the non-haemin iron in the human brain, J. Neurochem. 3:41–51.PubMedCrossRefGoogle Scholar
- Halliwell, B., and Gutteridge, J., 1985, Oxygen radicals and the nervous system, Trends Neurol. Sci. 8:22–29.CrossRefGoogle Scholar
- Halliwell, B., and Gutteridge, J. M. C., 1988, Iron as a biological prooxidant, ISI Atlas Sci. Biochem. 1:48–52.Google Scholar
- Hallgren, B., and Sourander, P., 1958, The effect of age on the non-haemin iron in the human brain, J. Neurochem. 3:41–51.PubMedCrossRefGoogle Scholar
- Hartley, A., Cooper, J. M., and Schapira, A. H. V., 1993, Iron-induced oxidative stress and mitochondrial dysfunction: Relevance to Parkinson’s disease, Brain Res. 627:349–353.CrossRefGoogle Scholar
- Hartley, A., Stone, J. M., Heron, C., Cooper, J. M., and Schapira, A. H., 1994, Complex I inhibitors induce dose-dependent apoptosis in PC 12 cells: Relevance to Parkinson’s disease, J. Neurochem. 63:1987–1990.PubMedCrossRefGoogle Scholar
- Hauser, R. A., Zesiewicz, T. A., Rosemurgy, A. S., Martinez, C., and Olanow, C. W., 1994, Manganese intoxication and chronic liver failure, Ann. Neurol. 36:871–875.PubMedCrossRefGoogle Scholar
- Hirsch, E. C., Brandel, J. P., Galle, P., Javoy-Agid, F., and Agid, Y, 1991, Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An x-ray microanalysis, J. Neurochem. 56:446–51.PubMedCrossRefGoogle Scholar
- Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J., 1993, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75:241–51.PubMedCrossRefGoogle Scholar
- Huang, C. C., Lu, C. S., Chu, N. S., Hochberg, F., Lilenfeld, D., Olanow, C. W, and Calne, D. B., 1993, Progression after chronic manganese exposure, Neurology 43:1479–1483.PubMedCrossRefGoogle Scholar
- Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Stachelberger, H., Ben-Shachar, D., and Youdim, M. B., 1992, Iron-melanin complex in substantia nigra of parkinsonian brains: An x-ray microanalysis, J. Neurochem. 59:1168–71.PubMedCrossRefGoogle Scholar
- Jenner, P., Schapira, A. H. V., and Marsden, C. D., 1992, New insights into the cause of Parkinson’s disease, Neurology 42:2241–2250.PubMedCrossRefGoogle Scholar
- Jenner, P., and Olanow, C. W., 1996, Pathological evidence for oxidative stress in Parkinson’s disease and related degenerative disorders, in: Neurodegeneration and Neuroprotection in Parkinson’s Disease (C. W. Olanow, P. Jenner, and M. H. B. Youdim, eds.), Academic Press, London, pp. 24–45.Google Scholar
- Jenner, P., and Olanow, C. W., 1996, Oxidative stress and the pathogenesis of Parkinson’s disease, Neurology 47:S161-S170.CrossRefGoogle Scholar
- Langston, J. W., Ballard, P. A., Tetrud, J. W., and Irwin, I., 1983, Chronic parkinsonism in humans due to a product of meperidine analog synthesis, Science 219:979–980.PubMedCrossRefGoogle Scholar
- Mizuno, Y, Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T., and Kagawa, Y, 1989, Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease, Biochem. Biophys. Res. Commun. 163:1450–1455.PubMedCrossRefGoogle Scholar
- Mizuno, Y, Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S.-L, 1994, An immunohistochemical study on a-ketoglutarate dehydrogenase complex in Parkinson’s disease, Ann. Neurol. 35:204–210.PubMedCrossRefGoogle Scholar
- Munro, H., 1993, The ferritin genes: Their response to iron status, Nutr. Rev. 51:65–73.PubMedCrossRefGoogle Scholar
- Mytilineou, C., Werner, P., Molinari, S., DiRocco, A., Cohen, G., and Yahr, M. D., 1994, Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease, J. Neural Transm. 8:223–228.CrossRefGoogle Scholar
- Mytilineou, C., Radcliffe, P., Leonardi, E. K., Werner, P., and Olanow, C. W., L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity, J. Neurochem. (in press).Google Scholar
- Newland, M. C., Ceckler, T L., Kordower, J. H., and Weiss, B., 1989, Visualizing manganese in the primate basal ganglia with magnetic resonance imaging, Exp. Neurol. 106:251–258.PubMedCrossRefGoogle Scholar
- Oestreicher, E., Sengstock, G. J., Riederer, P., Olanow, C. W., Dunn, A. J., and Arendash, G., 1994, Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: A histochemical and neurochemical study, Brain Res. 660:8–18.PubMedCrossRefGoogle Scholar
- Olanow, C. W., 1992, Magnetic resonance imaging in parkinsonism, Neurol. Clin. 10:405–20.PubMedGoogle Scholar
- Olanow, C. W., 1993, A radical hypothesis for neurodegeneration, Trends Neurosci. 16:439–444.PubMedCrossRefGoogle Scholar
- Olanow, C. W., 1994, Hallervorden Spatz syndrome, in: Neurodegenerative Diseases (D. B. Calne, ed.), W B. Saunders, Philadelphia, pp. 807–823.Google Scholar
- Olanow, C. W, and Calne, D., 1991, Does selegiline monotherapy in Parkinson’s disease act by symptomatic or protective mechanisms?, Neurology 42:13–26.Google Scholar
- Olanow, C. W., and Schapira, A. V. M., Neuroprotection and Parkinson’s disease, in: Neuroprotection: Fundamental and Clinical Aspects (P. R. Bar and F. Beal, eds.), Marcel Decker, New York (in press).Google Scholar
- Olanow, C. W, Cohen, G., Perl, D. P., and Marsden, C. D., 1992, Role of iron and oxidant stress in the normal and parkinsonian brain, Ann. Neurol. 32:1–145.CrossRefGoogle Scholar
- Olanow, C. W, Hauser, R. A., Gauger, L., Malapira, T., Koller, W., Hubble, J., Bushenbark, K., Lilienfeld, D., and Esterlitz, J., 1995, The effect of deprenyl and levodopa on the progression of signs and symptoms in Parkinson’s disease, Ann. Neurol. 38:771–777.PubMedCrossRefGoogle Scholar
- Olanow, C. W., and Youdim, M. H. B., 1996a, Iron and neurodegeneration: Prospects for neuroprotection, in: Neurodegeneration and Neuroprotection in Parkinson’s Disease (C. W. Olanow, P. Jenner, and M. H. B. Youdim, eds.), Academic Press, London, pp. 55–67.CrossRefGoogle Scholar
- Olanow, C. W., Good, P. F., Shinotoh, H., Hewitt, K. A., Vingerhoets, F., Snow, B. J., Beal, M. F., Calne, D. B., and Perl, D. P., 1996b, Manganese intoxication in the rhesus monkey: A clinical, imaging, pathologic, and biochemical study, Neurology 46:492–498.PubMedCrossRefGoogle Scholar
- Parker, W. D., Boyson, S. J., and Parks, J. K., 1989, Abnormalities of the electron transport chain in idiopathic Parkinson’s disease, Ann. Neurol. 26:719–723.PubMedCrossRefGoogle Scholar
- Parkinson Study Group, 1993, Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease, New Eng. J. Med 328:176–183.CrossRefGoogle Scholar
- Perry, T. L., Godin, D. V., and Hansen, S., 1982, Parkinson’s disease: A disorder due to nigral glutathione deficiency?, Neurosci. Lett. 33:305–310.PubMedCrossRefGoogle Scholar
- Pileblad, E., Magnusson, T., and Fornstedt, B., 1989, Reduction of brain glutathione by L-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum, J. Neuro-chem. 52:978–980.Google Scholar
- Riederer, P., and Wasserman, A., Progressive lesioning of nigrostriatal dopamine neurons by intranigral iron injections, J. Neural Trans, (in press).Google Scholar
- Riederer, P., Sofic, E., Rausch, W.-D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H., 1989, Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains, J. Neurochem. 52:515–520.PubMedCrossRefGoogle Scholar
- Roberts, R., Sandra, A., Siek, G. C., Lucas, J. J., and Fine, R. E. 1992, Studies of the mechanism of iron transport across the blood-brain barrier, Ann. Neurol. 32:S43-S50.CrossRefGoogle Scholar
- Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentai, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H.-X., Rahmani, Z., Krizus, A., McKenna-Yosek, D., Cayabyab, A., Gaston, S. M., Berger, B., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van den Bergh, R., Hung, W.-Y, Bird, T., Deng, G., Mulder, D. W., Smyth, C., Laihg, N. G., Soriano, E., Pericak-Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horvitz, H. R., and Brown, R. H., 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62.PubMedCrossRefGoogle Scholar
- Sanchez-Ramos, J. R., Overvik, E., and Ames, B. N., 1994, A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain, Neuro-degeneration 3:197–204.Google Scholar
- Schapira, A. H. V, Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D., 1990, Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem. 54:823–827.PubMedCrossRefGoogle Scholar
- Sengstock, G., Olanow, C. W., Dunn, A. J., and Arendash, G. W., 1992, Iron induces degeneration of nigrostriatal neurons, Brain Res. Bull. 28:645–649.PubMedCrossRefGoogle Scholar
- Sengstock, G. J., Olanow, C. W., Menzies, R. A., Dunn, A. J., and Arendash, G., 1993, Infusion of iron into the rat substantia nigra: Nigral pathology and dose-dependent loss of striatal dopaminergic markers, J. Neurosci. Res. 35:67–82.PubMedCrossRefGoogle Scholar
- Sengstock, G., Olanow, C. W., Dunn, A. J., Barone, S., and Arendash, G., 1994, Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra, Exp. Neurol. 130:82–94.PubMedCrossRefGoogle Scholar
- Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Agid, Y, Javoy-Agis, F., Jenner P., and Marsden, C. D., 1994a, Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia, Ann. Neurol. 36:348–355.PubMedCrossRefGoogle Scholar
- Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Jenner, P., and Marsden, C. D., 1994b, Glutathione-related enzymes in brain in Parkinson’s disease, Ann. Neurol. 36:356–361.PubMedCrossRefGoogle Scholar
- Sofic, E., Paulus, W., Jellinger, K., Riederer, P., and Youdim, M. B., 1991, Selective increase of iron in substantia nigra zona compacta of parkinsonian brains, J. Neurochem. 56:978–82.PubMedCrossRefGoogle Scholar
- Tanzi, R. E., Petrukhin, K., Chernov, I., Pelleguer, J. L., Wasco, W., Ross, B., Romano, D. M., Parano, E., Pavone, L., Brzustowicz, L. M., Devoto, M., Peppercorn, J., Bush, A. I., Sternleib, I., Pirasto, M., Grusella, J. F., Evgrafov, O., Penchaszadeh, G. K., Hornig, B., Edelman, I. S., Soares, M. B., Scheinberg, I. H., and Gilliom, C., 1993, The Wilson gene is a copper transporting ATPase with homology to the Menkes disease gene, Nat. Genet. 5:344–350.PubMedCrossRefGoogle Scholar
- Tatton, W. G., and Greenwood, C. E., 1991, Rescue of dying neurons: A new action for deprenyl in MPTP parkinsonism, J. Neurosci. Res. 30:666–677.PubMedCrossRefGoogle Scholar
- Tatton, W. G., Ju, W. Y L., Holland, D. P., Tai, C., and Kwan, M., 1994, (-)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis, J. Neurochem. 63:1572–1575.PubMedCrossRefGoogle Scholar
- Tatton, W. G., Ju, W. Y H., Wadia, J., and Tatton, N. A., 1996, Reduction of neuronal apoptosis by small molecules: promise for new approaches to neurological therapy, in: Neurodegeneration and Neuroprotection in Parkinson’s Disease (C. W. Olanow, P. Jenner, and M. H. B. Youim, eds.), Academic Press, London, pp. 202–220.Google Scholar
- Temlett, J. A., Landsberg, J. P., Watt, F., and Grime, G. W., 1994, Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African Green monkey: Evidence from proton microprobe elemental microanalysis, J. Neurochem. 62:134–146.PubMedCrossRefGoogle Scholar
- Wenning, G. K., Quinn, N., Magalhaes, M., Mathias, C., and Daniel, S. E., 1994, “Minimal Change” multiple system atrophy, Mov. Disord. 9:161–166.PubMedCrossRefGoogle Scholar
- Wolters, E. C. H., Huang, C. C., Clark, C., Peppard, R. F., Okada, J., Chu, N.-S., Adam, M. J., Ruth, T. J., Li, D., and Calne, D. B., 1989, Positron emission tomography in manganese intoxication, Ann. Neurol. 26:647–651.PubMedCrossRefGoogle Scholar
- Wtillner, U., Löschmann, P.-A., Schulz, J. B., Schmid, A., Dringen, R., Eblen, F., Turski, L., and Klockgether, T., 1996, Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones, Neuroreport 7:921–923.CrossRefGoogle Scholar
- Verbueken, A. H., Bruynseels, F. J., Van Grieken, R., and Adams, F., 1988, Laser microprobe mass spectrometry, in: Inorganic Mass Spectrometry (F. Adams, R. Gibels and R. Van Grieken eds.), New York, John Wiley, pp. 173–256.Google Scholar
- Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., et al., 1996, Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis, Science 271:515–518.PubMedCrossRefGoogle Scholar
- Yamaguchi, Y, Heiny, M. E., and Gitlin, J. D., 1993, Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease, Biochem. Biophys. Res. Commun. 197:271–277.PubMedCrossRefGoogle Scholar
- Ziv, I., Melamed, E., Nardi, N., Luria, D., Achiron, A., Offen, D., and Barzilai, A., 1994, Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons—a possible novel pathogenetic mechanism in Parkinson’s disease, Neurosci. Lett. 170:136–40.PubMedCrossRefGoogle Scholar