The Role of the Myofibroblast in Wound Healing and Fibrocontractive Diseases

  • Alexis Desmoulière
  • Giulio Gabbiani

Abstract

Following tissue injury, tissue repair takes place in well-characterized steps. After clot formation, inflammatory cells, essentially mononuclear cells and granulocytes, invade the injured tissue; then, fibroblasts migrate, proliferate, and synthesize extracellular matrix components, participating in the formation of granulation tissue. Finally, following reepithelialization and wound closure, tissue remodeling implicates extracellular matrix degradation, decrease of cellularity, and constitution of the scar.

Keywords

Wound Healing Granulation Tissue Myosin Heavy Chain Connective Tissue Growth Factor Extracellular Matrix Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adzick, N. S., and Longaker, M. T., 1992, Scarless fetal wound healing: Therapeutic implications, Ann. Surg. 215:3–7.PubMedCrossRefGoogle Scholar
  2. Adzick, N. S., Harrison, M. R., Glick, P. L., Beckstaed, J. L., Villa, R. L., Scheuenstuhl, H., and Goodson, W. H., 1985, Comparison of fetal, newborn, and adult wound healing by histologie, enzyme-histochemical, and hydroxyproline determinations, J. Pediatr. Surg. 20:315–319.PubMedCrossRefGoogle Scholar
  3. Aggarwal, B. B., and Pocsik, E., 1992, Cytokines: From clone to clinic, Arch. Biochem. Biophys. 292:335–359.PubMedCrossRefGoogle Scholar
  4. Antoniades, H. N., Galanopoulos, T., Neville-Golden, J., Kiritsy, C. P., and Lynch, S. E., 1991, Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epidermal cells and PDGF mRNA in connective tissue fibroblasts, Proc. Natl. Acad. Sci. USA 88:565–569.PubMedCrossRefGoogle Scholar
  5. Appleton, I., Tomlinson, A., Chander, C. L., and Willoughby, D. A., 1992, Effect of endothelin-1 on croton oil-induced granulation tissue in the rat, Lab. Invest. 67:703–710.PubMedGoogle Scholar
  6. Arnold, F., and West, D. C., 1991, Angiogenesis in wound healing, Pharm. Ther. 52:407–422.CrossRefGoogle Scholar
  7. Arora, P. D., and McCulloch, C. A. G., 1994, Dependence of collagen remodelling on α-smooth muscle actin expression by fibroblasts, J. Cell. Physiol. 159:161–175.PubMedCrossRefGoogle Scholar
  8. Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  9. Ballardini, G., Fallani, M., Biagini, G., Bianchi, F. B., and Pisi, E., 1988, Desmin and actin in the identification of Ito cells and in monitoring their evolution to myofibroblasts in experimental liver fibrosis, Virchows Arch. [B] Cell Pathol. 56:45–49.CrossRefGoogle Scholar
  10. Baur, P. S., Larson, D. L., and Stacey, T. R., 1975, The observation of myofibroblasts in hypertrophie scars, Surg. Gynecol. Obstet. 141:22–26.PubMedGoogle Scholar
  11. Bayreuther, K., Rodemann, H. P., Hommel, R., Dittmann, K., Albiez, M., and Francz, P. I., 1988, Human skin fibroblasts in vitro differentiate along a terminal cell lineage, Proc. Natl. Acad. Sci. USA 85:5112–5116.PubMedCrossRefGoogle Scholar
  12. Bayreuther, K., Francz, P. I., Gogol, J., Hapke, C., Maier, M., and Meinrath, H. G., 1991, Differentiation of primary and secondary fibroblasts in cell culture systems, Mutat. Res. 256:233–242.PubMedCrossRefGoogle Scholar
  13. Beck, L. S., DeGuzman, L., Lee, W. P., Xu, Y., Siegel, M. W., and Amento, E. P., 1993, One systemic administration of transforming growth factor-β1 reverses age-or glucocorticoid-impaired wound healing, J. Clin. Invest. 92:2841–2849.PubMedCrossRefGoogle Scholar
  14. Beertsen, W., Events, V., and van den Hoof, A., 1974, Fine structure of fibroblasts in the periodontal ligament of the rat incisor and their possible role in tooth eruption, Arch. Oral Biol. 19:1097–1098.Google Scholar
  15. Bell, E., Marek, L. F., Levinstone, D. S., Merrill, C., Sher, S., Young, I. T., and Eden, M., 1978, Loss of division potential in vitro: Aging or differentiation? Departure of cells from cycle may not be a sign of aging, but a sign of differentiation, Science 202:1158–1163.PubMedCrossRefGoogle Scholar
  16. Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.PubMedCrossRefGoogle Scholar
  17. Bellows, C. G., Melcher, A. H., and Aubin, J. E., 1981, Contraction and organization of collagen gels by cell cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types, J. Cell Sci. 211:1052–1054.Google Scholar
  18. Bennett, N. T., and Schultz, G. S., 1993, Growth factors and wound healing: Biochemical properties of growth factors and their receptors, Am. J. Surg. 165:728–737.PubMedCrossRefGoogle Scholar
  19. Birchmeier, C., and Birchmeier, W., 1993, Molecular aspects of mesenchymal-epithelial interactions, Annu. Rev. Cell Biol. 9:511–540.PubMedCrossRefGoogle Scholar
  20. Björkerud S., 1991, Effects of transforming growth factor-β1 on human arterial smooth muscle cells in vitro, Arterioscler. Thromb. 11:892–902.PubMedCrossRefGoogle Scholar
  21. Blau, H. M., and Baltimore, D., 1991, Differentiation requires continuous regulation, J. Cell Biol. 112:781–783.PubMedCrossRefGoogle Scholar
  22. Border, W. A., and Ruoslahti, E., 1992, Transforming growth factor-β in disease: The dark side of tissue repair, J. Clin. Invest. 90:1–7.PubMedCrossRefGoogle Scholar
  23. Border, W. A., Okuda, S., Languino, L. R., Sporn, M. B., and Ruoslahti, E., 1990, Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1, Nature 346:371–374.PubMedCrossRefGoogle Scholar
  24. Boswell, C. A., Majno, G., Joris, I., and Ostrom, K. A., 1992, Acute endothelial cell contraction in vitro: A comparison with vascular smooth muscle cells and fibroblasts, Microsvasc. Res. 43:178–191.CrossRefGoogle Scholar
  25. Bradham, D. M., Igarashi, A., Potter, R. L., and Grotendorst, G. R., 1991, Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC induced immediate early gene product CEF-10, J. Cell Biol. 114:1285–1294.PubMedCrossRefGoogle Scholar
  26. Bressler, R. S., 1973, Myoid cells in the capsule of the adrenal gland and in monolayers derived from cultured adrenal capsules, Anat. Rec. 177:525–531.PubMedCrossRefGoogle Scholar
  27. Broekelmamm, T. J., Limper, A. H., Colby, T. V., and McDonald, J. A., 1991, Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis, Proc. Natl. Acad. Sci. USA 88:6642–6646.CrossRefGoogle Scholar
  28. Bruce, S. A., 1991, Ultrastructure of dermal fibroblasts during development and aging: Relationship to in vitro senescence of dermal fibroblasts, Exp. Gerontol. 26:3–16.PubMedCrossRefGoogle Scholar
  29. Buoro, S., Ferrarese, P., Chiavegato, A., Roelofs, M., Scatena, M., Pauletto, P., Passerini-Glazel, G., Pagano, F., and Sartore, S., 1993, Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction, Lab. Invest. 69:589–602.PubMedGoogle Scholar
  30. Bussolino, F., Wang, J. M., Defilippi, P., Turrini, F., Sanavio, F., Edgell, C. J. S., Aglietta, M., Arese, P., and Mantovani, A., 1989, Granulocyte-and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate, Nature 337:471–473.PubMedCrossRefGoogle Scholar
  31. Burrington, J. D., 1971, Wound healing in the fetal lamb, J. Pediatr. Surg. 6:523–527.PubMedCrossRefGoogle Scholar
  32. Butta, A., MacLennan, K., Flanders, K. C., Sacks, N. P. M., Smith, I., McKinna, A., Dowsett, M., Wakefield, L. M., Sporn, M. B., Baum, M., and Coletta, A. A., 1992, Induction of transforming growth factor β1 in human breast cancer in vivo following tamoxifen treatment, Cancer Res. 52:4261–4264.PubMedGoogle Scholar
  33. Camps, J. L., Chang, S. M., Hsu, T. C., Freeman, M. R., Hong, S. J., Zhau, H. E., von Eschenbach, A. C., and Chung, L. W. K., 1990, Fibroblast-mediated acceleration of human epithelial tumor growth in vivo, Proc. Natl. Acad. Sci. USA 87:75–79.PubMedCrossRefGoogle Scholar
  34. Caplan, A. I., Fiszman, M. Y., and Eppenberger, H. M., 1983, Molecular and cell isoforms during development, Science 221:921–927.PubMedCrossRefGoogle Scholar
  35. Carney, D. H., Mann, R., Redin, W. R., Pernia, S. D., Berry, D., Heggers, J. P., Hayward, P. G., Robson, M. C., Christie, J., Annable, C., Fenton II, J. W., and Glenn, K. C., 1992, Enhancement of incisional wound healing and neovascularization in normal rats by thrombin and synthetic thrombin receptor-activating peptides, J. Clin. Invest. 89:1469–1477.PubMedCrossRefGoogle Scholar
  36. Carrel, A., 1922, Growth-promoting function of leucocytes, J. Exp. Med. 36:385–391.PubMedCrossRefGoogle Scholar
  37. Chamley-Campbell, J. H., and Campbell, G. R., 1981, What controls smooth muscle phenotype? Atherosclerosis 40:347–357.PubMedCrossRefGoogle Scholar
  38. Chaponnier, C., Goethals, M., Janmey, P. A., Gabbiani, F., Gabbiani, G., and Vandekerckhove, J., 1995, The specific NH2-terminal sequence Ac-EEED of α-smooth muscle actin plays a role in polymerization in vitro and in vivo, J. Cell Biol. 130:887–895.PubMedCrossRefGoogle Scholar
  39. Charbord, P., Lerat, H., Newton, I., Tamayo, E., Gown, A. M., Singer, J. W., and Herve, P., 1990, The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells, Exp. Hematol. 18:276–282.PubMedGoogle Scholar
  40. Chiavegato, A., Bochaton-Piallat, M. L., D’Amore, E., Sartore, S., and Gabbiani, G., 1995, Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia, Virchows Arch. 426:77–86.PubMedCrossRefGoogle Scholar
  41. Cintorino, M., Bellizi de Marco, E., Leoncini, P., Tripodi, S. A., Ramaekers, F. C., Sappino, A. P., Schmitt-Gräff, A., and Gabbiani, G., 1991, Expression of α-smooth-muscle actin in stromal cells of the uterine cervix during epithelial neoplastic changes, Int. J. Cancer 47:843–846.PubMedCrossRefGoogle Scholar
  42. Claman, H. N., 1985, Mast cells, T cells and abnormal fibrosis, Immunol. Today 6:192–195.CrossRefGoogle Scholar
  43. Clark, R. A. F., 1993, Regulation of fibroplasia in cutaneous wound repair, Am. J. Med. Sci. 306:42–48.PubMedCrossRefGoogle Scholar
  44. Clowes, A. W., and Karnovsky, M. J., 1977, Suppression by heparin of smooth muscle cell proliferation in injured arteries, Nature 265:625–626.PubMedCrossRefGoogle Scholar
  45. Clowes, A. W., Clowes, M. M., Kocher, O., Ropraz, P., Chaponnier, C., and Gabbiani, G., 1988, Arterial smooth muscle cells in vivo: Relationship between actin isoform expression and mitogenesis and their modulation by heparin, J. Cell Biol. 107:1939–1945.PubMedCrossRefGoogle Scholar
  46. Corjay, M. H., Blank, R. S., and Owens, G. K., 1990, Platelet-derived growth factor-induced destabilization of smooth muscle alpha-actin mRNA, J. Cell. Physiol. 145:391–397.PubMedCrossRefGoogle Scholar
  47. Cuhna, G. R., Hayashi, N., and Wong, Y. C., 1991, Regulation of differentiation and growth of normal adult and neoplastic epithelia by inductive mesenchyme, Cancer Surv. 11:73–90.Google Scholar
  48. Czernobilsky, B., Shezen, E., Lifschitz-Mercer, B., Fogel, M., Luzon, A., Jacob, N., Skalli, O., and Gabbiani, G., 1989, Alpha smooth muscle actin (α-SM actin) in normal human ovaries, in ovarian stromal hyperplasia and in ovarian neoplasma, Virchows Arch. [B] Cell. Pathol. 57:55–61.CrossRefGoogle Scholar
  49. Darby, I., Skalli, O., and Gabbiani, G., 1990, α-Smooth muscle actin is transiently expressed by myo-fibroblasts during experimental wound healing, Lab. Invest. 63:21–29.PubMedGoogle Scholar
  50. Davidson, J. M., Klagsbrun, M., Hill, K. E., Buckley, A., Sullivan, R., Brewer, P. S., and Woodward, S. C., 1985, Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor, J. Cell Biol 100:1219–1227.PubMedCrossRefGoogle Scholar
  51. Dedhar, S., Gaboury, L., Galloway, P., and Eaves, C., 1988, Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin, Proc. Natl. Acad. Sci. USA 85:9253–9257.PubMedCrossRefGoogle Scholar
  52. Delvoye, P., Wiliquet, R., Leveque, J. L., Nusgens, B. V., and Lapière, C. M., 1991, Measurement of mechanical forces generated by skin fibroblasts embedded in the three-dimensional collagen gel, J. Invest. Dermatol. 97:898–902.PubMedCrossRefGoogle Scholar
  53. Desmoulière, A., and Gabbiani, G., 1994, Modulation of fibroblastic cytoskeletal features during pathological situations: The role of extracellular matrix and cytokines, Cell Motil. Cytoskeleton 29:195–203.PubMedCrossRefGoogle Scholar
  54. Desmoulière, A., Rubbia-Brandt, L., and Gabbiani, G., 1991, Modulation of actin isoform expression in cultured arterial smooth muscle cells by heparin and culture conditions, Arterioscler. Thromb. 11:244–253.PubMedCrossRefGoogle Scholar
  55. Desmoulière, A., Rubbia-Brandt, L., Abdiu, A., Walz, T., Macieira-Coelho, A., and Gabbiani, G., 1992a, α-Smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by γ-interferon, Exp. Cell Res. 201:64–73.PubMedCrossRefGoogle Scholar
  56. Desmoulière, A., Rubbia-Brandt, L., Grau, G., and Gabbiani, G., 1992b, Heparin induces α-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts, Lab. Invest. 67:716–726.PubMedGoogle Scholar
  57. Desmoulière, A., Geinoz, A., Gabbiani, F., and Gabbiani, G., 1993, Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts, J. Cell Biol. 122:103–111.PubMedCrossRefGoogle Scholar
  58. Desmoulière, A., Redard, M., Darby, I., and Gabbiani, G., 1995, Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar, Am. J. Pathol. 146:56–66.PubMedGoogle Scholar
  59. Duncan, M. R., and Berman, B., 1985, 7 Interferon is the lymphokine and β interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation, J. Exp. Med. 162:516–527.PubMedCrossRefGoogle Scholar
  60. Ehrlich, H. P., Desmoulière, A., Diegelmann, R. F., Cohen, I. K., Compton, C. C., Garner, W. L., Kapanci, Y., and Gabbiani, G., 1994, Morphological and immunochemical differences between keloid and hyper-trophic scar, Am. J. Pathol. 145:105–113.PubMedGoogle Scholar
  61. Elger, M., Drenckhahn, D., Nobiling, R., Mundel, P., and Kriz, W., 1993, Cultured rat mesangial cells contain smooth muscle α-actin not found in vivo, Am. J. Pathol. 142:497–509.PubMedGoogle Scholar
  62. Estes, J. M., Vande Berg, J. S., Adzick, N. S., MacGillivray, T. E., Desmoulière, A., and Gabbiani, G., 1994, Phenotypic and functional features of myofibroblasts in sheep fetal wounds, Differentiation 56:173–181.PubMedCrossRefGoogle Scholar
  63. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Perm, L. Z., and Hancock, D. C., 1992, Induction of apoptosis in fibroblasts by c-myc protein, Cell 69:119–128.PubMedCrossRefGoogle Scholar
  64. Evans, V. G., 1993, Multiple pathways to apoptosis, Cell Biol. Int. 17:461–476.PubMedCrossRefGoogle Scholar
  65. Fabra, A., Nakajima, M., Bucana, C. D., and Fidler, I. J., 1992, Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice, Differentiation 52:101–110.PubMedCrossRefGoogle Scholar
  66. Fant, M. E., 1991, In vitro growth rate of placental fibroblasts is developmentally regulated, J. Clin. Invest. 88:1697–1702.PubMedCrossRefGoogle Scholar
  67. Fina, M., Bresnick, S., Baird, A., and Ryan, A., 1991, Improved healing of tympanic membrane perforations with basic fibroblast growth factor, Growth Factors 5:265–272.PubMedCrossRefGoogle Scholar
  68. Finch, P. W., Rubin, J. S., Miki, T., Ron, D., and Aaronson, S. A., 1989, Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth, Science 245:752–755.PubMedCrossRefGoogle Scholar
  69. Flaumenhaft, R., and Rifkin, D. B., 1991, Extracellular matrix regulation of growth factor and protease activity, Curr. Opin. Cell Biol. 3:817–823.PubMedCrossRefGoogle Scholar
  70. Franke, W. W., and Schinko, W., 1969, Nuclear shape in muscle cells, J. Cell Biol. 42:326–331.PubMedCrossRefGoogle Scholar
  71. Fredj-Reygrobellet, D., Plouet, J., Delayre, T., Baudouin, C., Bourret, F., and Lapalus, P., 1986, Effects of aFGF and bFGF on wound healing in rabbit corneas, Curr. Eye Res. 6:1205–1209.CrossRefGoogle Scholar
  72. Friedman, S. L., 1993, The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies, N. Engl. J. Med. 25:1828–1835.Google Scholar
  73. Frisch, S. M., and Francis, H., 1994, Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol. 124:619–626.PubMedCrossRefGoogle Scholar
  74. Gabbiani, G., Ryan, G. B., and Majno, G., 1971, Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction, Experientia 27:549–550.PubMedCrossRefGoogle Scholar
  75. Gabbiani, G., Chaponnier, C., and Hüttner, I., 1978, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.PubMedCrossRefGoogle Scholar
  76. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Chastonay, C., Vanderkerckhove, J., Weber, K., and Franke, W. W., 1981, Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific α-type actin, Proc. Natl. Acad. Sci. USA 78:298–302.PubMedCrossRefGoogle Scholar
  77. Gasson, J. C., 1991, Molecular physiology of granulocyte-macrophage colony-stimulating factor, Blood 77:1131–1145.PubMedGoogle Scholar
  78. Glasser, S. R., and Julian, J., 1986, Intermediate filament protein as a marker of uterine stromal cell decidualization, Biol. Reprod. 35:463–474.PubMedCrossRefGoogle Scholar
  79. Goldman, R. D., Lazarides, E., Pollack, R., and Weber, K., 1975, The distribution of actin in nonmuscle cells. The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells, Exp. Cell Res. 90:333–344.PubMedCrossRefGoogle Scholar
  80. Goss, A. N., 1977, Intrauterine healing of fetal rat oral mucosa, skin and cartilage, J. Oral Pathol. 6:35–38.PubMedCrossRefGoogle Scholar
  81. Grandstein, R. D., Rook, A., Flotte, T. J., Hass, A., Gallo, R. L., Jaffe, H. S., and Amento, E. P., 1990, A controlled trial of intralesional recombinant interferon-7 in the treatment of keloidal scarring, Arch. Dermatol. 126:1295–1302.CrossRefGoogle Scholar
  82. Greenburg, G., and Hay, E. D., 1986, Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro, Dev. Biol. 115:363–379.PubMedCrossRefGoogle Scholar
  83. Greenhalgh, D.G., Sprugel, K. H., Murray, M. J., and Ross, R., 1990, PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am. J. Pathol. 136:1235–1246.PubMedGoogle Scholar
  84. Grimaud, J. A., and Borojevic, R., 1977, Myofibroblasts in hepatic schistosomal fibrosis, Experientia 33:890–892.PubMedCrossRefGoogle Scholar
  85. Grillo, H. C., 1963, Origin of fibroblasts in wound healing: An autoradiographic study of inhibition of cellular proliferation by local x-irradiation, Ann. Surg. 157:453–467.PubMedCrossRefGoogle Scholar
  86. Grinnell, F., 1992, Wound repair, keratinocyte activation and integrin modulation, J. Cell Sci. 101:1–5.PubMedGoogle Scholar
  87. Grinnell, F., 1994, Fibroblasts, myofibroblasts, and wound contraction, J. Cell Biol. 124:401–404.PubMedCrossRefGoogle Scholar
  88. Hahn, A. W. A., Resink, T. J., Kern, F., and Bühler, F. R., 1992, Effects of endothelin-1 on vascular smooth muscle cell phenotypic differentiation, J. Cardiovasc. Pharmacol. 20(Suppl. 12):533–536.Google Scholar
  89. Harris, A. K., Stopack, D., and Wild, P., 1981, Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290:249–251.PubMedCrossRefGoogle Scholar
  90. Hayashi, N., Cuhna, G. R., and Parker, M., 1993, Permissive and instructive induction of adult rodent prostatic epithelium by heterotypic urogenital sinus mesenchyme, Epithelial Cell Biol. 2:66–78.PubMedGoogle Scholar
  91. Hayflick, L., 1965, The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res. 37:614–636.PubMedCrossRefGoogle Scholar
  92. Hayward, P. G., Geldner, P., Altrock, B., Pierce, G., and Robson, M. C., 1990, Granulocyte-macrophage colony stimulating factor in open wound healing, Surg. Forum 41:621–623.Google Scholar
  93. Hébert, L., Pandey, S., and Wang, E., 1994, Commitment to cell death is signaled by the appearance of a terminin protein of 30 kDa, Exp. Cell Res. 210:10–18.PubMedCrossRefGoogle Scholar
  94. Hoover, R. L., Rosenberg, R., Hearing, W., and Karnovsky, M. J., 1980, Inhibition of rat arterial smooth muscle cell proliferation by heparin, Circ. Res. 47:578–583.PubMedCrossRefGoogle Scholar
  95. Hunt, T. K., Banda, M. J., and Silver, I. A., 1985, Cell interactions in posttraumatic fibrosis, in: Fibrosis, Ciba Foundation Symposium 114 (A. Bailey, ed.), pp. 127–149, Pitman, London.Google Scholar
  96. Igarashi, A., Okochi, H., Bradham, D. M., and Grotendorst, G. R., 1993, Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair, Mol. Biol. Cell 4:637–645.PubMedGoogle Scholar
  97. Ingber, D. E., 1993, Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton, J. Cell Sci. 104:613–627.PubMedGoogle Scholar
  98. Janssen, P., 1902, Zur Lehre von der Dupuytren’schen Fingerkontraktur mit besonderer Berücksichtigung der operativen Beseitigung und der pathologischen Anatomie des Leidens, Arch. Klin. Chir. [Am.] 67:761–789.Google Scholar
  99. Johnson, R. J., Iida, H., Alpers, C. E., Majesky, M. W., Schwartz, S. M., Pritzl, P., Gordon, K., and Gown, A. M., 1991, Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. α-Smooth muscle actin is a marker of mesangial cell proliferation, J. Clin. Invest. 87:847–858.PubMedCrossRefGoogle Scholar
  100. Jones, T. C., 1993, The effects of rhGM-CSF on macrophage function, Eur. J. Cancer 29A:S10–S13.PubMedCrossRefGoogle Scholar
  101. Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.PubMedCrossRefGoogle Scholar
  102. Jürgensmeier, J. M., Schmitt, C. P., Viesel, E., Höfler, P., and Bauer, G., 1994, Transforming growth factor β-treated normal fibroblasts eliminate transformed fibroblasts by induction of apoptosis, Cancer Res. 54:393–398.PubMedGoogle Scholar
  103. Kapanci, Y., Burgan, S., Pietra, G. G., Conne, B., and Gabbiani, G., 1990, Modulation of actin isoform expression in alveolar myofibroblasts (contractile interstitial cells) during pulmonary hypertension, Am. J. Pathol. 136:881–889.PubMedGoogle Scholar
  104. Kapanci, Y., Ribaux, C., Chaponnier, C., and Gabbiani, G., 1992, Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung, J. Histochem. Cytochem. 40:1955–1963.PubMedCrossRefGoogle Scholar
  105. Kaye, G. I., Lane, N., and Pascal, P. R., 1968, Colonie pericryptal fibroblast sheet: Replication, migration and cytodifferentiation of a mesenchymal cell-system in adult tissue. II. Fine structural aspects of normal rabbit and human colon, Gastroenterology 54:852–865.PubMedGoogle Scholar
  106. Khalil, N., Bereznay, O., Sporn, M., and Greenberg, A. H., 1989, Macrophage production of transforming growth factor β and fibroblast collagen synthesis in chronic pulmonary inflammation, J. Exp. Med. 170:727–737.PubMedCrossRefGoogle Scholar
  107. Kischer, C. W., Thies, A. C., and Chvapil, M., 1982, Perivascular myofibroblasts and microvascular occlusion in hypertrophie scars and keloids, Hum. Pathol. 13:819–824.PubMedCrossRefGoogle Scholar
  108. Klein, C. E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R. B., and Weber, L., 1991, Integrin α2βl is up-regulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils, J. Cell Biol. 115:1427–1436.PubMedCrossRefGoogle Scholar
  109. Komuro, T., 1990, Re-evaluation of fibroblasts and fibroblast-like cells, Anat. Embryol. 182:103–112.PubMedCrossRefGoogle Scholar
  110. Kovacs, E. J., 1991, Fibrogenic cytokines: The role of immune mediators in the development of scar tissue, Immunol. Today 12:17–23.PubMedCrossRefGoogle Scholar
  111. Krummel, T. M., Nelson, J. M., Diegelmann, R. F., Lindblad, W. J., Salzberg, A. M., Greenfield, L. J., and Cohen, I. K., 1987, Fetal response to injury in the rabbit, J. Pediatr. Surg. 22:640–644.PubMedCrossRefGoogle Scholar
  112. Kuhn, C., and McDonald, J. A., 1991, The roles of the myofibroblast in idiopathic pulmonary fibrosis, Am. J. Pathol. 138:1257–1265.PubMedGoogle Scholar
  113. Lang, R. A., Metcalf, D., Cuthbertson, R. A., Lyons, I., Stanley, E., Kelso, A., Kannourakis, G., Williamson, D. J., Klintworth, G. K., Gonda, T. J., and Dunn, AR., 1987, Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage, Cell 51:675–686.PubMedCrossRefGoogle Scholar
  114. Lantz, M., Thysell, H., Nilsson, E., and Olsson, I., 1991, On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin, J. Clin. Invest. 88:2026–2031.PubMedCrossRefGoogle Scholar
  115. Larrabee, Jr., W F., East, C. A., Jaffe, H. S., Stephenson, C., and Peterson, K. E., 1990, Intralesional interferon gamma treatment for keloids and hypertrophie scars, Arch. Otolaryngol. Head Neck Surg. 116:1159–1162.PubMedCrossRefGoogle Scholar
  116. Larsen, R. D., and Posch, J. L., 1958, Dupuytren’s contracture. With special reference to pathology, J. Bone Joint Surg. Am. 40A:773–792.Google Scholar
  117. Leavitt, J., Gunning, P., Kedes, L., and Jariwalla, R., 1985, Smooth muscle α-actin is a transformation-sensitive marker for mouse NIH 3T3 and rat-2 cells, Nature 316:840–842.PubMedCrossRefGoogle Scholar
  118. Levi-Schaffer, F., Austen, K. F., Caulfield, J. P., Hein, A., Bloes, W. F., and Stevens, R. L., 1985, Fibroblasts maintain the phenotype and viability of the rat heparin-containing mast cells in vitro, J. Immunol. 135:3454–3462.PubMedGoogle Scholar
  119. Longaker, M. T., Burd, D. A. R., Gown, A. M., Yen T. S. B., Jennings, R. W., Duncan, B. W., Harrison, M. R., and Adzick, N. S., 1991, Midgestational excisional fetal lamb wounds contract in utero, J. Pediatr. Surg. 26:942–948.PubMedCrossRefGoogle Scholar
  120. Loréal, O., Levavasseur, F., Fromaget, C., Gros, D., Guillouzo, A., and Clément, B., 1993, Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro, Am. J. Pathol. 143:538–544.PubMedGoogle Scholar
  121. Lynch, S. E., Nixon, J. C., Colvin, R. B., and Antoniades, H. N., 1987, Role of platelet-derived growth factor in wound healing: Synergistic effects with other growth factors, Proc. Natl. Acad. Sci. USA 84:7696–7700.PubMedCrossRefGoogle Scholar
  122. MacDonald, R. A., 1959, Origin of fibroblasts in experimental healing wounds: Autoradiographic studies using tritiated thymidin, Surgery 46:376–382.PubMedGoogle Scholar
  123. Macieira-Coelho, A., 1988, Biology of normal proliferating cells in vitro. Relevance for in vivo aging, in: Interdisciplinary Topics in Gerontology, Vol. 23 (H. P. von Hahn, ed.), pp. 1–218, Karger, Basel.Google Scholar
  124. Macieira-Coelho, A., and Taboury, F., 1982, A re-evaluation of the changes in proliferation in human fibroblasts during ageing in vitro, Cell Tissue Kinet. 15:213–224.PubMedGoogle Scholar
  125. MacNulty, E. E., Plevin, R., and Wakelam, M. J. O., 1990, Stimulation of the hydrolysis of phospha-tidylinositol 4,5-biphosphate and phosphatidylcholine by endothelin, a complete mitogen for Rat-1 fibroblasts, Biochem. J. 272:761–766.PubMedGoogle Scholar
  126. MacSween, R. N. M., and Whaley, K., 1992, Inflammation, healing and repair, in: Muir’s Textbook of Pathology, 13th ed., pp. 112–165, Edward Arnold, London.Google Scholar
  127. Majack, R. A., and Bornstein, P., 1984, Heparin and related glycosaminoglycans modulate the secretory phenotype of vascular smooth muscle cells, J. Cell Biol. 99:1688–1695.PubMedCrossRefGoogle Scholar
  128. Majno, G., Shea, S. M., and Leventhal, M., 1969, Endothelial contraction induced by histamine-like mediators. An electron microscopic study, J. Cell Biol. 42:647–672.PubMedCrossRefGoogle Scholar
  129. Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., and Statkov, P.R., 1971, Contraction of granulation tissue in vitro: Similarity to smooth muscle, Science 173:548–550.PubMedCrossRefGoogle Scholar
  130. Martin, G. M., Sprague, C. A., Norwood, T. H., and Pendergrass, W. R., 1974, Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia, Am. J. Pathol. 74:137–154.PubMedGoogle Scholar
  131. Martin, P., and Lewis, J., 1992, Actin cables and epidermal movement in embryonic wound healing, Nature 360:179–182.PubMedCrossRefGoogle Scholar
  132. Martin, P., Hopkinson-Woolley, J., and McCluskey, J., 1992, Growth factors and cutaneous wound repair, Prog. Growth Factor Res. 4:25–44.PubMedCrossRefGoogle Scholar
  133. Martin, P., Nobes, C., McCluskey, J., and Lewis, J., 1994, Repair of exisional wounds in the embryo, Eye 8:155–160.PubMedCrossRefGoogle Scholar
  134. Mauviel, A., and Uitto, J., 1993, The extracellular matrix in wound healing: Role of the cytokine network, Wounds 5:137–152.Google Scholar
  135. McCaffrey, T. A., Falcone, D. J., Brayton, C. F., Agarwal, L. A., Welt, F. G. P., and Weksler, B. B., 1989, Transforming growth factor-β activity is potentiated by heparin via dissociation of the transforming growth factor-β/α2-macroglobulin inactive complex, J. Cell Biol. 109:441–448.PubMedCrossRefGoogle Scholar
  136. McCaffrey, T. A., Falcone, D. J., and Du, B., 1992, Transforming growth factor-β1 is a heparin-binding protein: Identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1, J. Cell Physiol. 152:430–440.PubMedCrossRefGoogle Scholar
  137. McCulloch, C. A. G., and Bordin, S., 1991, Role of fibroblast subpopulations in periodontal physiology and pathology, J. Periodont. Res. 26:144–154.PubMedCrossRefGoogle Scholar
  138. McDonald, J. A., Quade, B. J., Broekelmann, T. J., LaChane, R., Forsman, K., Hasegawa, E., and Akiyama, S., 1987, Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in the assembly into fibroblast pericellular matrix, J. Biol. Chem. 262:2957–2967.PubMedGoogle Scholar
  139. Meredith, Jr., J. E., Fazeli, B., and Schwartz, M. A., 1993, The extracellular matrix as a cell survival factor, Mol. Biol. Cell 4:953–961.PubMedGoogle Scholar
  140. Missero, C., Ramony Cajal, S., and Dotto, G. P., 1991, Escape from transforming growth factor β control and oncogene cooperation in skin tumor development, Proc. Natl. Acad. Sci. USA 88:9613–9617.PubMedCrossRefGoogle Scholar
  141. Mitchell, J. J., Woodcock-Mitchell, J., Reynolds, S., Low, R., Leslie, K., Adler, K., Gabbiani, G., and Skalli, O., 1989, α-Smooth muscle actin in parenchymal cells of bleomycin-injured rat lung, Lab. Invest. 60:643–650.PubMedGoogle Scholar
  142. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J., 1993, Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3, Cell 75:653–660.PubMedCrossRefGoogle Scholar
  143. Montesano, R., Matsumoto, K., Nakamura, T., and Orci, L., 1991, Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor, Cell 67:901–908.PubMedCrossRefGoogle Scholar
  144. Montesano, R., Pepper, M. S., and Orci, L., 1993, Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts, J. Cell Sci. 105:1013–1024.PubMedGoogle Scholar
  145. Moulton, B. C., 1994, Transforming growth factor-β stimulates endometrial stromal apoptosis in vitro, Endocrinology 134:1055–1060.PubMedCrossRefGoogle Scholar
  146. Murrel, G. A. C., Francis, M. J. O., and Bromley, L., 1987, Free radicals and Dupuytren’s contracture, Br. Med. J. 295:1373–1375.CrossRefGoogle Scholar
  147. Murrel, G. A. C., Francis, M. J. O., and Howlett, C. R., 1989, Dupuytren’s contracture. Fine structure in relation to aetiology, J. Bone Joint Surg. 71B:367–373.Google Scholar
  148. Muthukrishnan, L., Warder, E., and McNeil, P. L., 1991, Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells, J. Cell. Physiol. 148:1–16.PubMedCrossRefGoogle Scholar
  149. Nakanishi, H., Oguri, K., Takenaga, K., Hosoda, S., and Okayama, M., 1994, Differential fibrotic stromal responses of host tissue to low-and high-metastatic cloned Lewis lung carcinoma cells, Lab. Invest. 70:324–332.PubMedGoogle Scholar
  150. Nishiyama, T., Tsunenaga, M., Nakayama, Y., Adachi, E., and Hayashi, T., 1989, Growth rate of human fibroblasts is repressed by the culture within reconstituted collagen matrix but not by the culture on the matrix, Matrix 9:193–199.PubMedCrossRefGoogle Scholar
  151. Nusgens, B., Merrill, C., Lapière, C., and Bell, E., 1984, Collagen biosynthesis by cells in a tissue equivalent matrix in vitro, Collagen Relat. Res. 4:351–363.CrossRefGoogle Scholar
  152. Okomoto-Inoue, M., Taniguchi, S., Sadano, H., Kawano, T., Kimura, G., Gabbiani, G., and Baba, T., 1990, Alteration in expression of smooth muscle α-actin associated with transformation of rat 3Y1 cells, J. Cell Sci. 96:631–637.Google Scholar
  153. Ornitz, D. M., Yayon, A., Flanagan, J. G., Svahn, C. M., Levi, E., and Leder, P., 1992, Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell. Biol. 12:240–247.PubMedGoogle Scholar
  154. Pascolini, R., Di Rosa, I., Fagotti, A., Panara, F., and Gabbiani, G., 1992, The mammalian anti-α-smooth muscle actin monoclonal antibody recognizes an α-actin-like protein in planaria (Dugesia lugubris s.1.), Differentiation 51:177–186.PubMedCrossRefGoogle Scholar
  155. Pepper, M. S., Vassalli, J. D., Orci, L., and Montesano, R., 1993, Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis, Exp. Cell Res. 204:356–363.PubMedCrossRefGoogle Scholar
  156. Perdomo, J. J., Gounon, P., Schaeverbeke, M., Schaeverbeke, J., Groult, V., Jacob, M. P., and Robert, L., 1994, Interaction between cells and elastin fibers: An ultrastructural and immunocytochemical study, J. Cell. Physiol. 158:451–458.PubMedCrossRefGoogle Scholar
  157. Phipps, R. P., Penney, D. P., Keng, P., Silvera, M., Harkins, S., and Derdak, S., 1990, Immune functions of subpopulations of lung fibroblasts, Immunol. Res. 9:275–286.PubMedCrossRefGoogle Scholar
  158. Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Gramates, P., and Deuel, T. F., 1989, Transforming growth factor β reverses the glucocorticoid-induced wound-healing deficit in rats: Possible regulation in macrophages by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 86:2229–2233.PubMedCrossRefGoogle Scholar
  159. Pierce, G. F., Mustoe, T. A., Altrock, B. W., Deuel, T. F., and Thomasson, A., 1991, Role of platelet-derived growth factor in wound healing, J. Cell. Biochem. 45:319–326.PubMedCrossRefGoogle Scholar
  160. Pittet, B., Rubbia-Brandt, L., Desmoulière, A., Sappino, A. P., Roggero, P., Guerret, S., Grimaud, J. A., Lacher, R., Montandon, D., and Gabbiani, G., 1994, Action of γ-interferon on the clinical and biologic evolution of hypertrophic scars and Dupuytren’s disease: An open pilot study, Plast. Reconstr. Surg. 93:1224–1235.PubMedCrossRefGoogle Scholar
  161. Pohl, J., Bruhn, H. D., and Christophers, E., 1979, Thrombin and fibrin-induced growth of fibroblasts: Role in wound repair and thrombus organization, Klin. Wochenschr. 57:273–277.PubMedCrossRefGoogle Scholar
  162. Ramadori, G., 1991, The stellate cell (Ito-cell, fat-storing cell, lipocyte, perisinusoidal cell) of the liver, Virchows Arch. [B] Cell Pathol. 61:147–158.CrossRefGoogle Scholar
  163. Robaye, B., Mosselmans, R., Fiers, W., Dumont, J. E., and Galand, P., 1991, Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro, Am. J. Pathol. 138:447–453.PubMedGoogle Scholar
  164. Robson, M. C., 1991, Growth factors as wound healing agents, Curr. Opin. Biotech. 2:863–867.PubMedCrossRefGoogle Scholar
  165. Roche, W. R., 1991, Fibroblasts and asthma, Clin. Exp. Allergy 21:545–548.PubMedCrossRefGoogle Scholar
  166. Rockey, D. C., and Friedman, S. L., 1992, Cytoskeleton of liver perisinusoidal cells (lipocytes) in normal and pathological conditions, Cell Motil. Cytoskeleton 22:227–234.PubMedCrossRefGoogle Scholar
  167. Ronnov-Jessen, L., van Deurs, B., Celis, J. E., and Petersen, O. W., 1990, Smooth muscle differentiation in cultured human breast gland stromal cells, Lab. Invest. 63:532–543.PubMedGoogle Scholar
  168. Ronnov-Jessen, L., and Petersen, O. W., 1993, Induction of α-smooth muscle actin by transforming growth factor-β1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia, Lab. Invest. 68:696–707.PubMedGoogle Scholar
  169. Ross, R., Everett, N. B., and Tyler, R., 1970, Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis, J. Cell Biol. 44:645–654.PubMedCrossRefGoogle Scholar
  170. Rowsell, A. R., 1986, The intra-uterine healing of fetal muscle wounds: Experimental study in the rat, Br. J. Plast. Surg. 37:635–642.CrossRefGoogle Scholar
  171. Rubbia-Brandt, L., Sappino, A. P., and Gabbiani, G., 1991, Locally applied GM-CSF induces the accumulation of α-smooth muscle actin containing myofibroblasts, Virchows Arch. [B] Cell. Pathol. 60:73–82.CrossRefGoogle Scholar
  172. Ruoslahti, E., and Yamaguchi, Y., 1991, Proteoglycans as modulators of growth factor activities, Cell 64:867–869.PubMedCrossRefGoogle Scholar
  173. Ruoslahti, E., and Reed, J. C., 1994, Anchorage dependence, integrins, and apoptosis, Cell 77:477–478.PubMedCrossRefGoogle Scholar
  174. Ryan, G. B., Cliff, W. J., Gabbiani, G., Irle, C., Montandon, D., Statkov, P. R., and Majno, G., 1974, Myofibroblasts in human granulation tissue, Hum. Pathol. 5:55–67.PubMedCrossRefGoogle Scholar
  175. Sappino, A. P., Dietrich, P. Y., Widgren, S., and Gabbiani, G., 1989, Colonic pericryptal fibroblasts. Differentiation pattern in embryogenesis and phenotypic modulation in epithelial proliferative lesions, Virchows Arch. [A] Pathol. Anat. 415:551–557.CrossRefGoogle Scholar
  176. Sappino, A. P., Masouyé, I., Saurat, J. H., and Gabbiani, G., 1990a, Smooth muscle differentiation in scleroderma fibroblastic cells, Am J. Pathol. 137:585–591.PubMedGoogle Scholar
  177. Sappino, A. P., Schüren, W., and Gabbiani, G., 1990b, Differentiation repertoire of fibroblastic cells: Expression of cytoskeletal proteins as marker of phenotypic modulations, Lab. Invest. 63:144–161.PubMedGoogle Scholar
  178. Schiro, J. A., Chan, B. M. C., Roswit, W. R., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Kupper, T. S., 1991, Integrin a2βl (VLA-2) mediates reorganization and contraction of collagen matrices by human cells, Cell 67:403–410.PubMedCrossRefGoogle Scholar
  179. Schmitt-Gräff, A., Pau, H., Spahr, R., Piper, H. M., Skalli, O., and Gabbiani, G., 1990, Appearance of alpha-smooth muscle actin in human eye lens cells of anterior capsular cataract and in cultured bovine lens-forming cells, Differentiation 43:115–122.PubMedCrossRefGoogle Scholar
  180. Schmitt-Gräff, A., Krüger, S., Bochard, F., Gabbiani, G., and Denk, H., 1991, Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers, Am. J. Pathol. 138:1233–1242.PubMedGoogle Scholar
  181. Schmitt-Gräff, A., Desmoulière, A., and Gabbiani, G., 1994, Heterogeneity of myofibroblast phenotype features: An example of fibroblastic cell plasticity, Virchows Arch. 425:3–24.PubMedCrossRefGoogle Scholar
  182. Schüreh, W., Seemayer, T. A., and Gabbiani, G., 1992, Myofibroblast, in: Histology for Pathologists (S. S. Sternberg, ed.), pp. 109–144, Raven Press, New York.Google Scholar
  183. Seppa, H. E. J., Grotendorst, G. R., Seppa, S. I., Schiffmann, E., and Martin, G. R., 1982, Platelet-derived growth factor is chemotactic for fibroblasts, J. Cell Biol. 92:584–588.PubMedCrossRefGoogle Scholar
  184. Shah, M., Foreman, D. M., and Fergusson, M. W., 1992, Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta, Lancet 339:213–214.PubMedCrossRefGoogle Scholar
  185. Shimizu, K., and Yoshizato, K., 1992, Organ-dependent expression of differentiated states in fibroblasts cultured in vitro, Dev. Growth Differ. 34:43–50.CrossRefGoogle Scholar
  186. Shum, D. T., and McFarlane, R. M., 1988, Histogenesis of Dupuytren’s disease: An immunohistochemical study of 30 cases, J. Hand Surg. 13A:61–67.Google Scholar
  187. Singer, I.I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16:675–685.PubMedCrossRefGoogle Scholar
  188. Singer, I. I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo codistribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.PubMedCrossRefGoogle Scholar
  189. Skalli, O., and Gabbiani, G., 1988, The biology of the myofibroblast. Relationship to wound contraction and fibrocontractive diseases, in: The Molecular and Cellular Biology of Wound Repair (R. A. F. Clark, and P. M. Henson, eds.), pp. 373–402, Plenum Press, New York.CrossRefGoogle Scholar
  190. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G., 1986, A monoclonal antibody against α-smooth muscle actin: A new probe for smooth muscle differentiation, J. Cell Biol. 103:2787–2796.PubMedCrossRefGoogle Scholar
  191. Skalli, O., Schürcn, W., Seemayer, T. A., Lagacé, R., Montandon, D., Pittet, B., and Gabbiani, G., 1989, Myofibroblasts from diverse pathological settings are heterogeneous in their content of actin isoforms and intermediate filament proteins, Lab. Invest. 60:275–285.PubMedGoogle Scholar
  192. Soma, Y., and Grotendorst, G. R., 1989, TGFβ stimulates primary human skin fibroblasts DNA synthesis via an autocrine production of PDGF-related peptides, J. Cell. Physiol. 140:246–253.PubMedCrossRefGoogle Scholar
  193. Streuli, C. H., Schmidhauser, C., Kobrin, M., Bissell, M. J., and Derynck, R., 1993, Extracellular matrix regulates expression of the TGF-β1 gene, J. Cell Biol. 120:253–260.PubMedCrossRefGoogle Scholar
  194. Thiemermann, C., and Corder, R., 1992, Is endothelin-1 the regulator of myofibroblast contraction during wound healing? Lab. Invest. 67:677–679.PubMedGoogle Scholar
  195. Thornton, S. C., Por, S. B., Walsh, B. J., Penny, R., and Breit, S. N., 1990, Interaction of immune and connective tissue cells: I. The effect of lymphokines and monokines on fibroblast growth, J. Leucocyte Biol. 47:312–320.Google Scholar
  196. Toccanier-Pelte, M. F., Skalli, O., Kapanci, Y., and Gabbiani, G., 1987, Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathologic conditions, Am. J. Pathol. 129:109–118.PubMedGoogle Scholar
  197. Tomasek, J. J., and Haaksma, C. J., 1991, Fibronectin filaments and actin microfilaments are organized into a fibronexus in Dupuytren’s diseased tissue, Anat. Rec. 230:175–182.PubMedCrossRefGoogle Scholar
  198. Tomasek, J. J., Haaksma, C. J., Eddy, R. J., and Vaughan, M. B., 1992, Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organized actin cytoskeleton and serum, Anat. Rec. 232:358–368.CrossRefGoogle Scholar
  199. Ulich, T. R., Yi, E. S., Cardiff, R., Yin, S., Bikhazi, N., Biltz, R., Morris, C. F., and Pierce, G. F., 1994, Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor, Am. J. Pathol. 144:862–868.PubMedGoogle Scholar
  200. Vandekerckhove, J., and Weber, K., 1981, Actin typing on total cellular extracts. A highly sensitive protein chemical procedure able to distinguish different actins, Eur. J. Biochem. 113:595–603.PubMedCrossRefGoogle Scholar
  201. Vyalov, S., Desmoulière, A., and Gabbiani, G., 1993, GM-CSF-induced granulation tissue formation: Relationships between macrophage and myofibroblast accumulation, Virchows Arch. [B] Cell. Pathol. 63:231–239.CrossRefGoogle Scholar
  202. Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction, J. Cell Biol. 110:133–145.PubMedCrossRefGoogle Scholar
  203. Wharton, W., 1984, Newborn human skin fibroblast senesce in vitro without acquiring adult growth factor requirements, Exp. Cell Res. 154:310–314.PubMedCrossRefGoogle Scholar
  204. Willingham, M. C., Yamada, S. S., Davies, P. J. A., Rutherford, A. V., Gallo, M. G., and Pastan, I., 1981, Intracellular localization of actin in cultured fibroblasts by electron microscopic immunochemistry, J. Histochem. Cytochem. 29:17–37.PubMedCrossRefGoogle Scholar
  205. Yokoi, Y., Namihisa, T., Kuroda, H., Komatsu, I., Miyazaki, A., Watanabe, S., and Usui, K., 1984, Immu-nocytochemical detection of desmin in fat-storing cells (Ito cells), Hepatology 4:709–714.PubMedCrossRefGoogle Scholar
  206. Zavala, C., Herner, G., and Fialkow, P. J., 1978, Evidence for selection in cultured diploid fibroblast strains, Exp. Cell Res. 117:137–144.PubMedCrossRefGoogle Scholar
  207. Zhang, K., Rekhter, M. D., Gordon, D., and Phan, S. H., 1994, Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study, Am. J. Pathol. 145:114–125.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Alexis Desmoulière
    • 1
    • 2
  • Giulio Gabbiani
    • 3
  1. 1.Department of PathologyUniversity of GenevaSwitzerland
  2. 2.Institut Pasteur de LyonCNRS-URA 1459Lyon cedex 7France
  3. 3.Department of PathologyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations