Reepithelialization

  • David T. Woodley

Abstract

Reepithelialization is the term used in common parlance to indicate the covering of a skin wound with a new epithelium. In clinical practice, this term is truly ill-defined and usually does not take into account the complexity and specialty cells of an unwounded, mature, human epidermal layer. In the examination of a healed or healing wound, the clinician often says that the wound is “reepithelialized” if the moist erythematous vascular granulation bed is covered by a dry film of epithelium. At the clinical level, the physician usually does not take into account other functions of this epithelial membrane such as its immune function directed by epidermal Langerhan’s cells, the role of pigment-producing melanocytes, the sensory function of epithelial Merkel’s cells, the barrier function of an organized and mature stratum corneum, and the stable epidermal-dermal adherence that occurs by a fully formed neobasement membrane zone between the epidermis and the underlying neodermis. In the future, as we advance our abilities to measure these functions, it is hoped that the definition of reepithelialization on the clinical level will undergo more refinement and discrimination.

Keywords

Human Keratinocyte Bullous Pemphigoid Epidermolysis Bullosa Basement Membrane Component Dermal Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, E. A., 1977, Cell culture density as a modulator of collagenase expression in normal human fibroblast cultures, Exp. Cell Res. 107:209–276.CrossRefGoogle Scholar
  2. Bauer, E. A., Gordon, J. M., Reddick, M. E., and Eisen, A. Z., 1977, Quantitation and immunocytochemical localization of human skin collagenase in basal cell carcinoma, J. Invest. Dermatol. 69:363–367.PubMedCrossRefGoogle Scholar
  3. Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, K., and Voth, M., 1981, Locomotion of Xenopus epidermis cells in primary culture, J. Cell. Sci. 52:289–311.PubMedGoogle Scholar
  4. Brown, C., Stenn, K. S., Falk, R. J., Woodley, D. T., and O’Keefe, E. J., 1991, Vitronectin: Effects on keratinocyte motility and inhibition of collagen-induced motility, J. Invest. Dermatol. 96:724–728.PubMedCrossRefGoogle Scholar
  5. Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, III, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. J., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.PubMedCrossRefGoogle Scholar
  6. Carter, W. G., Ryan, M. C., and Gahn, P. J., 1991, Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes, Cell 65:599–610.PubMedCrossRefGoogle Scholar
  7. Ceilley, E., Watanabe, N., Shapiro, D., Verrando, P., Bauer, E. A., Burgeson, R., Briggaman, R. A., and Woodley, D. T., 1993, Labeling of fractured human skin with antibodies to BM 600/nicein, epiligrin, kalinin and other matrix components, J. Dermatol. Sci. 5:97–103.PubMedCrossRefGoogle Scholar
  8. Chen, J. D., Kim, J. P., Zhang, K., Sarret, Y., Wynn, K. C., Kramer, R. H., and Woodley, D. T., 1993a, Epidermal growth factor (EGF) promotes human keratinocyte locomotion on collagen by increasing the α2 integrin subunit, Exp. Cell Res. 209:216–223.PubMedCrossRefGoogle Scholar
  9. Chen, J. D., Langhofer, M., Iwasaki, T., Kim, Y. H., Jones, J. C. R., Krueger, J. G., Carter, D. M., and Woodley, D. T., 1993b, Junctional epidermolysis bullosa (JEB) keratinocytes fail to secrete hemidesmo-some (HD)-associated matrix elements and demonstrate enhanced locomotion, J. Invest. Dermatol. 11(4): 170 (Abstract).Google Scholar
  10. Chen, J. D., Lapierre, J.-C., Sauder, D., Peavey, C., and Woodley, D. T., 1995, Interleukin-1 alpha stimulates keratinocyte migration through an EGF/TGF-alpha independent pathway, J. Invest. Dermatol. 104:729–733.PubMedCrossRefGoogle Scholar
  11. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 79:264–269.PubMedCrossRefGoogle Scholar
  12. Clark, R. A. F., Folkvord, J. M., and Wertz, R. L., 1985, Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence, J. Invest. Dermatol. 85:368–383.CrossRefGoogle Scholar
  13. Colman, G. J., and Roenigk, H. H., 1978, Topical therapy of leg ulcers with 20 percent benzoyl peroxide lotion, Cutis 21:491–494.PubMedGoogle Scholar
  14. Cornelius, L. A., Woodley, D. T., Cronce, D. J., and Briggaman, R. A., 1986, Dermal-epidermal junction reformation following human skin wounding studied by correlative ultrastructural and immunochemical techniques, J. Invest. Dermatol. 86:469 (Abstract).Google Scholar
  15. Diaz, L. A., Ratrie, H., Saunders, W. S., Futamura, S., Squiquera, H. R., Anhalt, G. J., and Guidice, G. J., 1990, Isolation of a human epidermal cDNA corresponding to the 180 kD autoantigen recognized by bullous pemphigoid and herpes gestationis sera. Immunolocaliazation of this protein to the hemidesmo-some, J. Clin. Invest. 86:1088–1094.PubMedCrossRefGoogle Scholar
  16. DiPasquale, A., 1975, Locomotion of epithelial cells, Exp. Cell Res. 95:425–439.PubMedCrossRefGoogle Scholar
  17. Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin on substrates from epidermal cell migration during wound closure, J. Cell Sci. 62:117–123.PubMedGoogle Scholar
  18. Donaldson, D. J., and Mahan, J. T., 1984, Influence of catecholamines on epidermal cell migration during wound closure in adult newts, Comp. Biochem. Physiol. 78C:267–270.Google Scholar
  19. Duband, J. L., Nuckolls, G. H., Ishihara, A., Hasegawa, T., Yamada, K. M., Thiery, J. P., and Jacobson, K., 1988, Fibronectin receptor exhibits high lateral motility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells, J. Cell Biol. 107:1385–1396.PubMedCrossRefGoogle Scholar
  20. Dunlap, M. K., 1980, Cyclic AMP levels in migrating and non-migrating newt epidermal cells, J. Cell. Physiol. 104:367–373.PubMedCrossRefGoogle Scholar
  21. Dunlap, M. K., and Donaldson, D. J., 1978, Inability of colchicine to inhibit newt epidermal cell migration or prevent concanavalin A-mediated inhibition of migration studies in vivo, Exp. Cell Res. 116:15–19.PubMedCrossRefGoogle Scholar
  22. Eaglstein, W. H., Davis, S. C., Mehle, A. L., and Mertz, P. M., 1988, Optimal use of an occlusive dressing to enhance healing, Arch. Dermatol. 124:392–395.PubMedCrossRefGoogle Scholar
  23. Falanga, V., Katz, M. H., and Alvarez, A. F., 1991, Dibutryl cyclic AMP by itself or in combination with growth factors can stimulate or inhibit growth of human keratinocytes or dermal fibroblasts, Wounds 3:70–78.Google Scholar
  24. Fritsch, P., Tappeiner, G., and Huspek, G., 1979, Keratinocyte substrate adhesion is magnesium-dependent and calcium independent, Cell Biol. Int. Rep. 3:593–598.PubMedCrossRefGoogle Scholar
  25. Gabbiani, G., Chaponnier, C., and Huttner, I., 1978, Cytoplasmic filament and gap functions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.PubMedCrossRefGoogle Scholar
  26. Gailit, J., Welch, M. P., and Clark, R. A. F., 1994, TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds, Invest. Dermatol. 103:221–227.CrossRefGoogle Scholar
  27. Gentzkow, G. D., Alon, G., Taler, G., Eltorai, I., and Montray, R., 1993, Healing of refractory stage III and IV pressure ulcers by a new electrical stimulation device, Wounds 5(3): 160–172.Google Scholar
  28. Gibbins, J. R., 1972, Metabolic requirements for epithelial migration as defined by the use of metabolic inhibitors in organ culture, Exp. Cell Res. 71:329–337.PubMedCrossRefGoogle Scholar
  29. Gibbins, J. R., 1973, Epithelial migration in organ culture. Role of protein synthesis as determined by metabolic inhibitors, Exp. Cell Res. 80:281–290.PubMedCrossRefGoogle Scholar
  30. Gilchrest, B. A., Nemore, R. E., and Maciag, T., 1980, Growth of human keratinocytes on fibronectin-coated plates, Cell Biol. Int. Rep. 4:1009–1016.PubMedCrossRefGoogle Scholar
  31. Gipson, I. K., and Anderson, R. A., 1980, Effect of lectin on migration of the corneal epithelium, Invest. Ophthalmol. Vis. Sci. 19:341–349.PubMedGoogle Scholar
  32. Gipson, I. K., and Kiorpes, T. C., 1982, Epithelial sheet movement: Protein and glycoprotein synthesis, Dev. Biol. 92:259–262.PubMedCrossRefGoogle Scholar
  33. Gipson, I. K., Westcott, M. J., and Brooksby, N. G., 1982, Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium, Invest. Ophthal. Vis. Sci. 22:633–642.PubMedGoogle Scholar
  34. Guidice, G., Squiquera, H. L., Elias, P. M., and Diaz, L. A., 1991, Identification of two collagen domains within the bullous pemphigoid autoantigen, BP180, J. Clin. Invest. 87:734–738.CrossRefGoogle Scholar
  35. Haymen, E. G., Pierschbacher, M. D., Suzuki, S., and Ruoslahti, E., 1985, Vitronectin: A major cell attachment-promoting protein in filal bound serum, Exp. Cell. Res. 160:245–258.CrossRefGoogle Scholar
  36. Hebda, P. A., 1988, Stimulatory effects of transforming growth factor beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.PubMedCrossRefGoogle Scholar
  37. Hebda, P. A., Klingbeil C., Abraham J., and Fiddes, J. C., 1988, Acceleration of epidermal wound healing by human basic fibroblast growth factor, J. Invest. Dermatol. 90:568a.Google Scholar
  38. Hintner, H., Fritsch, P. O., Foidart, T. M., Stingl, G., Schuler, G., and Katz, S. I., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin, J. Invest. Dermatol. 74:200–204.PubMedCrossRefGoogle Scholar
  39. Iwasaki, T., Kim, J. P., Wynn, K. C., and Woodley, D. T., 1994, Dibutryl cyclic AMP modulates keratinocyte locomotion, J. Invest. Dermatol. 102:891–897.PubMedCrossRefGoogle Scholar
  40. Kim, J. P., Chen, J. D., and Woodley, D. T., 1992a, Mechanism of human keratinocyte migration on fibronectin: Unique roles of RGD site and integrins, J. Cell. Physiol. 151:443–450.PubMedCrossRefGoogle Scholar
  41. Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., and Woodley, D. T., 1992b, Integrin receptors and RGD sequences in human keratinocyte migration: Unique anti-migratory function of α3β1, J. Clin. Invest. 98:764–770.Google Scholar
  42. Kim, Y. H., Kim, J. P., Chen, J. D., Iwasaki, T., Hernandez, G., Saraf, P., Bauer, E. A., and Woodley, D. T., 1993, Biologic characteristics of recessive dystrophic epidermolysis bullosa (RDEB) keratinocytes, J. Invest. Dermatol. 11(4):551 (Abstract).Google Scholar
  43. Kim, J. P., Schall, T. J., Kleinman, H. K., and Woodley, D. T., 1994a, Human keratinocyte migration on type IV collagen: Unique roles of heparin binding site and integrins, Lab. Invest. 71:401–408.PubMedGoogle Scholar
  44. Kim, J. P., Zhang, K., Chen, J. D., Kramer, R. H., and Woodley, D. T., 1994b, Vitronectin-driven human keratinocyte locomotion is mediated the αvβ5 integrin receptor, J. Biol. Chem. 43:26926–26932.Google Scholar
  45. Kono, I., Matsumoto, Y., Kano, K., Yasuhisa, I., Narushima, K., Kabashima, T., Yamane, K., Sakurai, T., and Kashiwagi, H., 1985, Beneficial effect of topical fibronectin in patients with keratoconjunctivitis sicca of Sjorgren’s syndrome, J. Rheumatol. 12:487–489.PubMedGoogle Scholar
  46. Kubo, M., Noms, D. A., Howell, S. E., and Clark, R. A. F., 1984, Human keratinocytes synthesize, secrete and deposit fibronectin in the pericellular matrix, J. Invest. Dermatol. 82:580–586.PubMedCrossRefGoogle Scholar
  47. Kupper, T. S., Ballard, D. W., Chua, A. O., McGuire, J. S., Flood, P. M., Horowitz, M. C., Langdon, L., and Gubler, V., 1986, Expression of mRNA homologous to interleukin-1 in human epidermal cells, J. Exp. Med. 64:2095–2098.CrossRefGoogle Scholar
  48. Kuwabara, T., Perkins, D. G., and Cogan, D. G., 1976, Sliding of the epithelium in experimental corneal wounds, Invest. Ophthalmol. 15:4–14.PubMedGoogle Scholar
  49. Liotta, L. A., Siegeto, A., Gebron-Robey, P., and Martin, A. K., 1979, Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic tumor, Proc. Natl. Acad. Sci. USA 76:2268–2272.PubMedCrossRefGoogle Scholar
  50. Luger, T. A., Stadler, B. M., Katz, S. I., and Oppenheimer, J. J., 1981, Epidermal cell derived thymocyte activating factor (ETAF), J. Immunol. 127:1493–1498.PubMedGoogle Scholar
  51. Lyon, R. A., and Reynolds, T. E., 1929, Promotion of healing by benzoyl peroxide and other agents, Proc. Soc. Exp. Biol. Med. 27:122–151.CrossRefGoogle Scholar
  52. Marinkovich, M. P., Peavey, C. L., Burgeson, R. E., and Woodley, D. T., 1994, Kalinin inhibits collagen-driven human keratinocyte migration, J. Clin. Invest. 102(4): 157 (Abstract).Google Scholar
  53. Mertz, P., Davis, C., Cazzaniga, A., Cheng, K., Reich, J., and Eaglstein, W., 1993, Electrical stimulation: Acceleration of soft tissue repair by varying the polarity, Wounds 5(3): 153–159.Google Scholar
  54. Mustoe, T. A., Pierce, G. F., Thomason, A., Sporn, M., Gramates, P. H., and Deuel, T. F., 1987, Accelerated healing of incisional wounds in rats induced by transforming growth factor β, Science 237:1333–1335.PubMedCrossRefGoogle Scholar
  55. Mutasim, D. F., Takahashi, Y., Ramzy, L. S., Anhalt, G. J., Patel, H. P., and Diaz, L. A., 1985, A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex, J. Invest. Dermatol. 84:47–53.PubMedCrossRefGoogle Scholar
  56. Nishida, T., Nakagawa, S., and Manabe, R., 1985, Clinical evaluation of fibronectin eye drops on epithelial disorders after herpetic keratitis, Ophthalmology 92:213–216.PubMedGoogle Scholar
  57. Ödland, G., and Ross, R., 1968, Human wound repair. I Epidermal regeneration, J. Cell Biol. 39:135–151.PubMedCrossRefGoogle Scholar
  58. O’Keefe, E. J., Woodley, D., Castillo, G., Russell, N., and Payne, R. E., 1984, Production of soluble and cell associated fibronectin by cultured keratinocytes, J. Invest. Dermatol. 82:150–155.PubMedCrossRefGoogle Scholar
  59. O’Keefe, E. J., Payne, R. E., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.PubMedCrossRefGoogle Scholar
  60. O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.PubMedCrossRefGoogle Scholar
  61. Peavey, C. L., Ladin, D. A., Mustoe, T. A., and Woodley, D. T., 1994, Hypoxia stimulates human keratinocyte migration on interstitial collagen, J. Clin. Invest. 102(4):699 (Abstract).Google Scholar
  62. Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1989, Constitutive production of procollagenase and collagenase inhibitor by human keratinocytes in culture, J. Invest. Dermatol. 92:156–159.PubMedCrossRefGoogle Scholar
  63. Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.PubMedCrossRefGoogle Scholar
  64. Postlethwaite, A. E., Lachman, L. B., Mainardi, C. L., and Kang, A. H., 1982, Interleukin I stimulation of collagenase production by cultured fibroblasts, J. Exp. Cell Biol. 157:801–806.Google Scholar
  65. Rao, C. N., Ladine, D., Liu, Y., Hou, Z., Chilukuri, K., and Woodley, D. T., 1995, Alpha 1 antitypsin is degraded and non-functional in chronic wounds: The inhibitor protects fibronectin from degradation by chronic wound fluid enzymes, J. Invest. Dermatol. in press.Google Scholar
  66. Regnier, M., Prunieras, M., and Woodley, D., 1981, Growth and differentiation of adult human epidermal cells on dermal substrate, Front. Matrix Biol. 9:4–32.Google Scholar
  67. Robledo, M. A., Kim, S.-C., Korman, N. J., Stanley, J. R., Labib, R. S., Futamura, S., and Anhalt, G. J., 1990, Studies of the relationship of the 230 kD and 180 kD bullous pemphigoid antigens, J. Invest. Dermatol. 94:793–797.PubMedCrossRefGoogle Scholar
  68. Rocha, V., Horn, Y. K., and Marinkovich, M. P., 1986, Basal lamina inhibition suppresses synthesis of calcium-dependent proteins associated with mammary epithelial cell spreading, Exp. Cell Res. 165:450–460.PubMedCrossRefGoogle Scholar
  69. Rousselle, P., Lunstrum, G. P., Keene, D. R., and Burgeson, R. E., 1991, Kalinin: An epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments, J. Cell Biol. 114:567–576.PubMedCrossRefGoogle Scholar
  70. Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238:491–497.PubMedCrossRefGoogle Scholar
  71. Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981, Fibronectin: Current concepts of its structure and function, Coll. Res. 1:95–128.CrossRefGoogle Scholar
  72. Sarret, Y., Kleinman, H. K., and Woodley, D. T., 1991, The peptide (CSIKVAVS-NH2) near the amino terminus of the laminin A chain markedly inhibits human keratinocyte locomotion, Clin. Res. 39(2):514A (Abstract).Google Scholar
  73. Sarret, Y., Raftery, K., and Woodley, D. T., 1992a, Intracellular and extracellular calcium levels dramatically alter human keratinocyte migration, J. Invest. Dermatol. 98(4):572 (Abstract).Google Scholar
  74. Sarret, Y., Woodley, D. T., Grigsby, K., Wynn, K. C., and O’Keefe, E. J., 1992b, Human keratinocyte locomotion: The effect of selected cytokines, J. Invest. Dermatol. 98:12–16.PubMedCrossRefGoogle Scholar
  75. Sauder, D. N., Carter, C., Katz, S. I., and Oppenheim, J. J., 1982, Epidermal cell production of thymocyte activating factor (ETAF), J. Invest. Dermatol. 79:34–39.PubMedCrossRefGoogle Scholar
  76. Sauder, D. N., Stanulis-Prager, B. M., and Gilchrist, B. A., 1988, Autocrine growth stimulation of human keratinocytes by epidermal cell derived thymocyte activating factor, Arch. Dermatol. Res. 280:71–78.PubMedCrossRefGoogle Scholar
  77. Schaumburg-Lever, G., Rule, R. A., Schmidt-Ullrich, B., and Lever, W. F., 1975, Ultrastructural localization of in vivo bound immunoglobulins in bullous pemphigoid: A preliminary report, J. Invest. Dermatol. 64:47–49.PubMedCrossRefGoogle Scholar
  78. Scheel, G., Rahsoth, B., Franke, J., and Grau, P., 1991, Acceleration of wound healing by local application of fibronectin, Arch. Orthop. Trauma Surg. 110:284–287.PubMedCrossRefGoogle Scholar
  79. Stanley, J. R., Alvarez, O. M., Bere, E. W., Eaglstein, W. H., and Katz, S. I., 1981, Detection of membrane zone antigens during epidermal wound healing in pigs, J. Invest. Dermatol. 7:240–243.CrossRefGoogle Scholar
  80. Stanley, J. R., Woodley, D. T., Katz, S. I., and Martin, G. R., 1982a, Structure and function of basement membrane, J. Invest. Dermatol. 79:69s–72s.PubMedCrossRefGoogle Scholar
  81. Stanley, J. R., Hawley-Nelson, P., Yaar, M., Martin, G. R., and Katz, S. I., 1982b, Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells, J. Invest. Dermatol. 78:456–459.PubMedCrossRefGoogle Scholar
  82. Stanley, J. R., Tanaka, T., Mueller, S., Klaus-Kouan, V., and Roop, D., 1988, Isolation of complementary DNA for bullous pemphigoid antigen by use of patients’ autoantibodies, J. Clin. Invest. 82:1864–1870.PubMedCrossRefGoogle Scholar
  83. Stenn, K. S., 1978, The role of serum in the epithelial outgrowth of mouse skin expiants, Br. J. Dermatol. 98:411–416.PubMedCrossRefGoogle Scholar
  84. Stenn, K. S., 1981, Epibolin: A protein of human plasma which supports epithelial cell movement, Proc. Natl. Acad. Sci. USA 78:6907–6911.PubMedCrossRefGoogle Scholar
  85. Stenn, K. S., 1987, Coephibolin, the activity of human serum that enhances the cell-spreading properties of epibolin, associates with albumin, J. Invest. Dermatol. 89:59–63.PubMedCrossRefGoogle Scholar
  86. Stenn, K. S., and Core, N. G., 1986, Calton dependence of guinea pig epidermal cell spreading, In Vitro Cell. Dev. Biol. 22:217–222.PubMedCrossRefGoogle Scholar
  87. Stenn, K. S., and Depalma, L., 1988, Re-epithelialization, in: The Molecular and Cellualr Bilolgy of Wound Repair, 1st ed. (R. A. F. Clark and P. M. Hensen, eds.), pp. 321–325, Plenum Press, New York.CrossRefGoogle Scholar
  88. Stenn, K. S., and Dvoretzky, I., 1979, Human serum and epithelial spread in tissue culture, Arch. Dermatol. Res. 246:3–15.CrossRefGoogle Scholar
  89. Stenn, K. S., Madri, J. A., and Roll, F. J., 1979, Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement, Nature 277:229–232.PubMedCrossRefGoogle Scholar
  90. Takashima, A., and Grinnell, F., 1984, Human keratinocyte adhesion and phagocytosis promoted by fibronectin, J. Invest. Dermatol. 83:352–358.PubMedCrossRefGoogle Scholar
  91. Varghese, M. C., Balin, A. K., Carter, M., and Caldwell, D., 1986, Local environment of chronic wounds under synthetic dressings, Arch. Dermatol. 122:52–56.PubMedCrossRefGoogle Scholar
  92. Verrando, P., Hsi, B. L., Yeh, C.-J., Pisani, A., Serieys, N., and Ortonne, J.-P., 1987, Monoclonal antibody GB3, a new probe in the study of human basement membranes and hemidesmosomes, Exp. Cell Res. 170:116–128.PubMedCrossRefGoogle Scholar
  93. Westgate, G. E., Weaver, A. C., and Couchman, J. R., 1985, Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes, J. Invest. Dermatol. 84:218–224.PubMedCrossRefGoogle Scholar
  94. Wilke, M. S., and Furcht, L. T., 1990, Human keratinocytes adhere to a unique heparin-binding peptide sequence within the triple helical domain of type IV collagen, J. Invest. Dermatol. 95:264–270.PubMedCrossRefGoogle Scholar
  95. Winter, G. D., 1962, Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig, Nature 193:293–294.PubMedCrossRefGoogle Scholar
  96. Woodley, D. T., and Kim, Y. H., 1992, A double-blind comparison of wound dressings using uniform suction blister wounds, Arch. Dermatol. 128:1354–1357.PubMedCrossRefGoogle Scholar
  97. Woodley, D. T., Didierjean, L., Regnier, M., Saurat, J., and Prunieras, M., 1980a, Bullous pemphigoid antigen synthesized in vitro by human epidermal cells, J. Invest. Dermatol. 75:148–151.PubMedCrossRefGoogle Scholar
  98. Woodley, D. T., Regnier, M., and Prunieras, M., 1980b, In vitro basal lamina formations may require non-epidermal cell living substrate, Br. J. Dermatol. 103:397–404.PubMedCrossRefGoogle Scholar
  99. Woodley, D. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinman, H. K., 1983, Interactions of basement membrane components, Biochim. Biophys. Acta 761:278–283.PubMedCrossRefGoogle Scholar
  100. Woodley, D. T., O’Keefe, E. J., and Prunieras, M., 1985a, Cutaneous wound healing: A model for cell-matrix interactions, J. Am. Acad. Dermatol. 12:420–433.PubMedCrossRefGoogle Scholar
  101. Woodley, D. T., Briggaman, R. A., Gammon, W. R., and O’Keefe, E. J., 1985b, Epidermolysis bullosa acquisita antigen is synthesized by human keratinocytes cultured in serum-free medium, Biochem. Biophys. Res. Commun. 130:1267–1272.PubMedCrossRefGoogle Scholar
  102. Woodley, D. T., Kelebec, T., Banes, A. J., Link, W., Prunieras, M., and Liotta, L. A., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 86:418–423, 1986.PubMedCrossRefGoogle Scholar
  103. Woodley, D. T., O’Keefe, E. J., McDonald, J. A., 1987, Specific affinity between fibronectin and the epidermolysis bullosa acquisita antigen, J. Clin. Invest. 179:1826–1830.CrossRefGoogle Scholar
  104. Woodley, D. T., Bachmann, P. M., and O’Keefe, E. J., 1988a, Laminin inhibits human keratinocyte migration, J. Cell. Physiol. 136:140–146.PubMedCrossRefGoogle Scholar
  105. Woodley, D. T., Peterson, H. D., Herzog, S. R., Stricklin, G. P., Burgeson, R. E., Briggaman, R. A., Cronce, D. J., and O’Keefe, E. J., 1988b, Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils, J. Am. Med. Assoc. 259:2566–2571.CrossRefGoogle Scholar
  106. Woodley, D. T., Briggaman, R. A., Herzog, S., Meyers, A., Peterson, H. D., and O’Keefe, E. J., 1990a, Characterization of neo-dermis formation beneath cultured human epidermal autografts transplanted on muscle fascia, J. Invest. Dermatol. 95:20–26.PubMedCrossRefGoogle Scholar
  107. Woodley, D. T., Wynn, K. C., and O’Keefe, E. J., 1990b, Type IV collagen and fibronectin enhance human keratinocyte thymidine incorporation, J. Invest. Dermatol. 94:139–143.PubMedCrossRefGoogle Scholar
  108. Wysocki, A., Baxter, C. R., Bergstresser, P. R., Grinnell, F., Horowitz, M. S., and Horowitz, B., 1988, Topical fibronectin therapy for treatment of a patient with chronic status ulcers, Arch. Dermatol. 124:175–177.PubMedCrossRefGoogle Scholar
  109. Wysocki, A. B., and Grinnell, F., 1990, Fibronectin profiles in normal and chronic wound fluid, Lab. Invest. 63:825–831.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • David T. Woodley
    • 1
  1. 1.Department of DermatologyNorthwestern UniversityChicagoUSA

Personalised recommendations