Taurine 2 pp 527-535 | Cite as

Role of Taurine in Thermoregulation and Motor Control

Behavioural and Cellular Studies
  • Gianpietro Sgaragli
  • Maria Frosini
  • Mitri Palmi
  • Henry B. F. Dixon
  • Nicholas Desmond-Smith
  • Loria Bianchi
  • Laura Della Corte
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)

Abstract

Despite extensive studies on the synthesis and possible neuronal or extraneuronal uptake and release of taurine, there is still no consensus about its functions23, 24, 35. It has variously been designated as a neurotransmitter, neuromodulator, a modulator of Ca2+ fluxes, an osmoregulator or membrane stabilizer and an antioxidant (Figure 1). These effects may, at least in some cases, be interlinked. Thus, for example, the neuroprotective effects of taurine may be related to its osmoregulatory, antioxidant and Ca2+-modulating functions.

Keywords

Substantia Nigra Kainic Acid Cysteine Sulfinic Acid Cysteine Sulfinate Decarboxylase Cysteine Sulfinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albin, R.L., Young, A.B. and Penney, J.B., 1989. The functional anatomy of basal ganglia disorders. Trend Neuroscl., 12:366–375.CrossRefGoogle Scholar
  2. 2.
    Bianchi, L., Sharp, T., Bolam, J.P. and Delia Corte, L., 1994, The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra. Neuroreport, 5:1233–1236.CrossRefGoogle Scholar
  3. 3.
    Bolam, J.R and Smith, A.D., 1992. The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labeling study combined with post-embedding immunocytochemistry for GABA. J. Comp. Neurol., 321:456–476.CrossRefGoogle Scholar
  4. 4.
    Bureau, M.H. and Olsen, R.W., 1991. Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur. J. Pharmacol., 207:9–16.CrossRefGoogle Scholar
  5. 5.
    Campistron, G., Geffard, M. and Buijs, R.M., 1986. Immunological approach to the detection of taurine and immunocytochemical results. J. Neurochem., 46:862–868.CrossRefGoogle Scholar
  6. 6.
    Carlà, V., Dacke, C.G., Davidson, N., Giotti, A., Magnani, M., and Sgaragli, G.P., 1982. Taurine and thermoregulation: behavioral and cellular studies, in: “Taurine in Nutrition and Neurology”. R.J. Huxtable, H. Pasantes-Morales, eds, Plenum Publ. Corp., New York, pp 361–372.CrossRefGoogle Scholar
  7. 7.
    Chan-Palay, V., Palay, S.L. and Wu, J.-Y., 1982. Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine synthesizing enzyme cysteine sulphinic acid decarboxylase. Proc. Natl. Acad. Sci. USA, 79:4221–4225.CrossRefGoogle Scholar
  8. 8.
    Chevalier, G. and Deniau, J.M., 1990. Disinhibition as a basic process in the expression of striatal function. Trend Neurosci., 13:277–281.CrossRefGoogle Scholar
  9. 9.
    Clarke, D.J., Smith, A.D., and Bolam, J.P., 1983. Uptake of [3H]taurine into medium-size neurons and into identified stratonigral neurons in the rat neostriatum. Brain Res., 289:342–348.CrossRefGoogle Scholar
  10. 10.
    Clarke, H.T., Gillespe, H.B., and Weisshaus, S.Z., 1933. The action of formaldehyde on amines and amino acids. J. Am.Chem.Soc, 55:4571–4587.CrossRefGoogle Scholar
  11. 11.
    Collins, G.G.S., 1974. The rates of synthesis, uptake and disappearance of [14C]taurine in eight areas of the rat central nervous system. Brain Res., 76:447–459.CrossRefGoogle Scholar
  12. 12.
    Cooper, J.R., Bloom, F.E., and Roth, R.H., 1991. Identification of synaptic transmitters, in, “The Biochemical Basis of Neuropharmacology”, pp. 39–43, Oxford University Press, New York, Oxford.Google Scholar
  13. 13.
    De Long, M.R., Wichmann, T., 1993. Basal ganglia-thalamocortical circuits in parkinsonian signs. Clin.Neurosci., 1:18–26.Google Scholar
  14. 14.
    Decavel, C., and Hatton, G.I., 1995. Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J. Comp. Neurology, 354:13–26.CrossRefGoogle Scholar
  15. 15.
    Delia Corte, L., Bianchi, L., Federico, S., and Michelassi, S., 1991. In vivo HPLC estimation of extracellular aspartate, glutamate, taurine and GABA in rat striatum. Eur.J.Neurosci. suppl.4, p 151.Google Scholar
  16. 16.
    Delia Corte, L., Bolam, J.P., and Smith, A.D., 1987. Uptake, localization and release of taurine in the rat basal ganglia, In: “The Biology of Taurine”, R.J. Huxtable, F. Franconi and A. Giotti, eds, pp. 285–294, Plenum Publ. Corp., New York.CrossRefGoogle Scholar
  17. 17.
    Delia Corte, L., Bolam, J.P., Clarke, D.J., Parry, D.H., and Smith, A.D., 1990. Sites of [3H]taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway. Eur. J. Neurosci., 2:50–61.CrossRefGoogle Scholar
  18. 18.
    Dray, A., and Straughan, D.W., 1976. Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol., 28:400–405.CrossRefGoogle Scholar
  19. 19.
    Freifelder, M., Howard, B., and Wright, H.B., 1964. Hypocholesteremic agents. II. The hydrogenation of some pyridine sulfonic acids. J. Med. Chem., 7:664–665.CrossRefGoogle Scholar
  20. 20.
    Geoghegan, K.F., and Dixon, H.B.F., 1989. Synthesis of 2-aminoethylarsonic acid: A new synthesis of amines from haloalkanes. Biochem. J., 260:295–296.Google Scholar
  21. 21.
    Hanretta, A.T., and Lombardini, J.B., 1985. Effects of intrahypothalamic kainic acid injection on taurine levels, binding and uptake. Brain Res., 338:351–354.CrossRefGoogle Scholar
  22. 22.
    Häusser, M.A., Yung, W.H., and Lacey, M.G., 1992. Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurons. Brain Res., 571:103–108.CrossRefGoogle Scholar
  23. 23.
    Huxtable, R.J., 1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol., 32:471–533.CrossRefGoogle Scholar
  24. 24.
    Huxtable, R.J., 1992. Physiological actions of taurine. Physiol. Rev., 72:101–159.Google Scholar
  25. 25.
    Ida, S., Kuriyama, K., Tomida, Y., and Kimura, H., 1987. Antisera against taurine: quantitative characterization of the antibody specificity and its application to immunohistochemical study in the rat brain. J. Neurosci. Res., 18:626–631.CrossRefGoogle Scholar
  26. 26.
    Kaakkola, S., and Kaariainen, T., 1980. Contralateral circling behaviour induced by intranigral injection of taurine in rats. Acta Pharmacol. Toxicol., 46:293–298.CrossRefGoogle Scholar
  27. 27.
    Kamata, K., Kameyana, T., Okuyama, S., Hashimoto, S., and Aihara, H., 1985. Contralateral circling behaviour induced by intranigral microinjections of taurine and GABA in rats. Brain Res., 343:275–282.CrossRefGoogle Scholar
  28. 28.
    Kluger, R., Nakaoka, K., and Tsui, W.C., 1978. Substrate analogue studies of the specificity and catalytic mechanism of D-3-hydroxybutyrate dehydrogenase. J. Am. Chem. Soc., 100:7388–7392.CrossRefGoogle Scholar
  29. 29.
    Korf, J., and Venema, K., 1983. Aminoacids in the substantia nigra of rats with striatal lesions produced by kainic acid. J. Neurochem., 40:1171–1173.CrossRefGoogle Scholar
  30. 30.
    Legay, F., Lecestre, D., and Tappaz, M., 1987. Taurine biosynthesis in rat brain in vivo: lack of relationship with cystein sulfinate decarboxylase glutamate decarboxylase-associated activity (GAD/CSDII). J. Neurochem., 48:340–344.CrossRefGoogle Scholar
  31. 31.
    Legay, F., Waise, V.K., Oertel, W.H. and Tappaz, M.L., 1987. Taurine biosynthesis in rat brain: a new specific and sensitive microassay of cysteine sulfinate decaboxylase (CSDI) activity through selective knmunotrapping and its use for distribution studies. J. Neurochem., 48:345–351.CrossRefGoogle Scholar
  32. 32.
    Lombardini, J.B., 1976. Regional and subcellular studies on taurine in the rat central nervous system. Acta Physiol. Scand., 412:1–48.Google Scholar
  33. 33.
    Lombardini, J.B., 1977. High affinity uptake systems for taurine on tissue slices and synaptosomal fractions prepared from various brain regions of the rat central nervous system. J. Neurochem., 29:305–312.CrossRefGoogle Scholar
  34. 34.
    Lombardini, J.B., 1976. Regional and subcellular studies on taurine in the rat nervous system, in “Taurine”, R. Huxtable and A. Barbeau, eds, pp. 311–326, Raven Press, New York.Google Scholar
  35. 35.
    Lombardini, J.B., 1991. Taurine and retinal function. Brain Res. Rev, 16:151–169.CrossRefGoogle Scholar
  36. 36.
    Madsen, S., Ottersen, O.P., and Storm-Mathisen, J., 1985. Immunocytochemical visualization of taurine: neuronal localization in the rat cerebellum. Neurosci. Lett., 60:255–260.CrossRefGoogle Scholar
  37. 37.
    Madsen, S., Ottersen, O.P., and Storm-Mathisen, J., 1987. Immunocytochemical demonstration of taurine, in “The biology of taurine: methods and mechanisms”, R.J. Huxtable, F. Franconi and A. Giotti, eds, pp. 275–284, Plenum Press, New York and London.Google Scholar
  38. 38.
    Magnusson, K.R., Madl, J.E., Clements, J.R., Wu, J.-Y., Larson, A., and Beitz, A.J., 1988. Colocalization of taurine-and cysteine sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with the use of monoclonal antibodies against taurine. J. Neuroscl., 8:4551–4564.Google Scholar
  39. 39.
    Mandel, P., and Pasantes-Morales, H., 1978. Taurine in the central nervous system. Rev. Neurosci., 3:157–193.Google Scholar
  40. 40.
    Martin, G.E., Bendesky, R.J., and Williams, M., 1981. Further evidence for selective antagonism of taurine by 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1, 1-dioxide. Brain Res., 299:30–535.Google Scholar
  41. 41.
    Oja, S.S., and Kontro, P., 1979. Neurotransmitter actions of taurine in the central nervous system, in, “Taurine and neurological disorders”, A. Barbeau and R. J. Huxtable, eds, pp 181–200, Raven Press, New York.Google Scholar
  42. 42.
    Ottersen, O.P., Madsen, S., Meldrum, B.S., and Storm-Mathisen, J., 1985. Taurine localization in the hippocampal formation of the senegalese baboon Papio papio: an immunocytochemical study with an antiserum against conjugated taurine. Exp. Brain Res., 59:457–462.CrossRefGoogle Scholar
  43. 43.
    Palkovits, M., Elekes, I., Lang, T., and Patthy, A., 1986. Taurine levels in discrete brain nuclei of rats. J. Neurochem., 47:1333–1335.CrossRefGoogle Scholar
  44. 44.
    Palmi, M., Frosini, M., and Sgaragli, G.P., 1992. Calcium changes in rabbit cerebrospinal fluid during endotoxin, IL-1, and prostaglandin fever. Pharmacol.Biochem.Behav., 43:1253–1262.CrossRefGoogle Scholar
  45. 45.
    Pirvola, U., and Panula, P., 1992. Distribution of taurine in the rat cerebellum and insect brain: application of a new antiserum against carbodiimide-conjugated taurine. Histochem. J., 24:266–274.CrossRefGoogle Scholar
  46. 46.
    Remy, A., Henry, S., and Tappaz, M., 1990. Specific antiserum and monoclonal antibodies against taurine biosynthesis enzyme cysteine sulfinate decarboxylase: identity of brain and liver enzyme. J. Neurochem., 54:870–879.CrossRefGoogle Scholar
  47. 47.
    Sgaragli, G.P., Carla, V, Magnani, M. and Giotti, A., 1978. Homotaurine and muscimol mimic taurine and GABA effects on muscle tone and temperature regulation. Naunyn Schmiedeberg’ s Arch. Pharmacol., 305:155–158.CrossRefGoogle Scholar
  48. 48.
    Sgaragli, G.P, Carla, V., Magnani, M., and Galli, A., 1981. Hypothermia induced in rabbits by intracere-broventricular taurine: specificity and relationship with central serotonin (5HT) systems. J. Pharmacol. Exp. Ther., 219:778–785.Google Scholar
  49. 49.
    Sgaragli, G.P., and Palmi, M., 1985. The role and mechanism of action of taurine in mammalian thermoregulation, in, “Taurine: biological action and clinical perspectives”, S.S. Oja, L. Athee, P. Kontro. and M.K. Paasonen, eds., pp. 343–357, Alan R. Liss, Inc., New York.Google Scholar
  50. 50.
    Smith, A.D., and Bolam, J.P., 1989. Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res., 493:160–167.CrossRefGoogle Scholar
  51. 51.
    Smith, A.D., and Bolam, J.P., 1991. Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience, 44:45–73.CrossRefGoogle Scholar
  52. 52.
    Spears, R.M., and Martin, J.P., 1982. Resolution and brain regional distribution of cysteine sulfinate decarboxylase isoenzyme from hog brain. J. Neurochem., 38:981–985.CrossRefGoogle Scholar
  53. 53.
    Storm-Mathisen, J., and Ottersen, O.P., 1986. Antibodies against aminoacid neurotransmitters, in: “Neurohistochemistry: modern methods and applications”, P. Panula, H. Paivarinta and S. Soinila, eds, pp. 107–136, Alan R. Liss, New York.Google Scholar
  54. 54.
    Stromhaugh, J., Skumlien, S., Storm-Mathisen, J. and Ottersen, O.P., 1987. Immunocytochemical demonstration of putative aminoacid neurotransmitters in the striatonigral pathway. Neuroscience, Suppl. 22:S36.Google Scholar
  55. 55.
    Wu, J-Y., Bird, E.D., Chen, M.S., and Huang, W.M., 1979. Abnormalities of neurotransmitter enzymes in Huntington’s chorea. Neurochem. Res., 4:575–586.CrossRefGoogle Scholar
  56. 56.
    Yarbrough, G.G., Singh, D.K., and Taylor, D.A., 1981. Neuropharmacological characterization of a taurine antagonist. J. Pharmacol. Exp. Ther., 219:604–613.Google Scholar
  57. 57.
    Yoshida, M., Karasawa, N., Ito, M., Sakai, M., and Nagatsu, I., 1986. Demonstration of taurine immunoreactivity in the rat brain. Neurosci. Res., 3:356–363.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gianpietro Sgaragli
    • 1
  • Maria Frosini
    • 1
  • Mitri Palmi
    • 1
  • Henry B. F. Dixon
    • 2
  • Nicholas Desmond-Smith
    • 2
  • Loria Bianchi
    • 3
  • Laura Della Corte
    • 3
  1. 1.Istituto di Scienze FarmacologicheUniversità degli Studi di SienaSienaItaly
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK
  3. 3.Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi-Mancini”Universitá degli Studi di FirenzeFlorenceItaly

Personalised recommendations