Taurine 2 pp 473-479 | Cite as

Interaction of γ-L-Glutamyltaurine with Kainate-Induced Cyclic Amp Formation in the Rat Hippocampus

  • V. Varga
  • Réka Janáky
  • A. Takáts
  • S. S. Oja
  • R. Dohovics
  • Leena Rechardt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)

Abstract

γ-L-Glutamyltaurine (LGT) is the most abundant taurine-containing peptide in the CNS19, 31, being located mainly in neurons30. LGT is synthesized by γ-glutamyltransferase (EC 2.3.2.2) and can be degraded to glutamate and taurine by γ-glutamyltransferase or to 5-oxoproline and taurine by γ-glutamylcyclotransferase (EC 2.3.2.4)17, 31. Some intriguing central effects (e. g. anticonflict and antiepileptic actions) of LGT have been reported10, 16. They may be attributed to the interaction of LGT with different steps of glutamatergic neurotransmission32–34.

Keywords

Adenylate Cyclase Hippocampal Slice Excitatory Amino Acid Receptor Cerium Chloride Cysteine Sulfinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aramori, I., and Nakanishi, S. 1992, Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells, Neuron, 8: 757–765.CrossRefGoogle Scholar
  2. 2.
    Baba, A., Lee, E., Tatsuno, T., and Iwata, H. 1982, Cysteine sulfinic acid in the central nervous system: antagonistic effect of taurine on cysteine sulfinic acid-stimulated formation of cyclic AMP in guinea pig hippocampal slices, J. Neurochem., 38, 1280–1285.CrossRefGoogle Scholar
  3. 3.
    Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988, Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: role of extracellular chloride, J. Pharmacol. Exp. Ther., 245: 299–304.Google Scholar
  4. 4.
    Barnes, J.M., Murphy, P.A., Kirkham, D., and Henley, M. 1993, Interaction of guanine nucleotides with [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2, 3-dione binding in goldfish brain, J. Neurochem., 61: 1685–1691.CrossRefGoogle Scholar
  5. 5.
    Ben-Ari, Y., and Represa, A. 1990, Brief seizure episodes induce long-term potentiatiom and mossy fibre sprouting in the hippocampus, Trends Neurosci., 13: 312–318.CrossRefGoogle Scholar
  6. 6.
    Bird, S.J., and Gulley, R.L. 1979, Evidence against a presynaptic mechanism for kainate neurotoxicity in the cochlear nucleus, Neurosci. Lett., 15: 55–60.CrossRefGoogle Scholar
  7. 7.
    Cali, J.J., Zwaagstra, J.C., Mons, N., Cooper, D.M.F., and Krupinski, J. 1994, Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain, J. Biol. Chem., 16: 12190–12195.Google Scholar
  8. 8.
    Choi, D.W. 1988, Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1: 623–634.CrossRefGoogle Scholar
  9. 9.
    Collingridge, G.L., and Lester, A. J. 1989, Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 40: 143–210.Google Scholar
  10. 10.
    Eder, T., Rieder, P., and Weiser, M. 1982, Über die Hemmwirkung von Gamma-L-Glutamyl-Taurin und einiger anderer Antikonvulsiva auf durch Umweltreize auslösbare epileptiforme Anfalle mongolischer Wustenrennmäuse (Meriones unguiculatus), Wiener Tierärztl. Monatschr., 69: 16–18.Google Scholar
  11. 11.
    Ferrendelli, J.A., Chang, M.M., and Kinscherf, D.A., 1974, Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids, J. Neurochem., 22: 535–540.CrossRefGoogle Scholar
  12. 12.
    Foster, A.C., Mena, E.E., Monaghan, D.T., and Cotman, C.W. 1981, Synaptic localization of kainic acid binding sites, Nature, 289: 73–75.CrossRefGoogle Scholar
  13. 13.
    Greengard, P., Jen, J., Nairn, A.C., and Stevens, CF. 1991, Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons, Science, 253: 1135–1138.CrossRefGoogle Scholar
  14. 14.
    Jones, A.W., Smith, D.A.S., and Watkins, J.C. 1984, Structure-activity relations of dipeptide antagonists of excitatory amino acids, Neuroscience, 13: 573–581.CrossRefGoogle Scholar
  15. 15.
    Kendall, D.A., Mills, P.J., and Firth, J.L. 1992, Direct and indirect stimulations of cyclic AMP formation in human brain, Br. J. Pharmacol. 105: 899–902.CrossRefGoogle Scholar
  16. 16.
    Kuribara, H., and Tadokoro, S. 1982, An anticonflict effect of gamma-L-glutamyltaurine (Litoralon) in rats, Japan J. Pharmacol, 32: 1067–1074.CrossRefGoogle Scholar
  17. 17.
    Lähdesmäki, P. 1987, Biosynthesis of taurine peptides in brain cytoplasmic fraction in vitro, Int. J. Neurosci., 37: 79–84.CrossRefGoogle Scholar
  18. 18.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951, Protein measurement with the Folin phenol reagent, J. Biol Chem. 193: 265–275.Google Scholar
  19. 19.
    Marnela, K.M., Morris, M.R., Panico, M., Timonen, M., and Lähdesmäki, P. 1985, Glutamyl-taurine is the predominant synaptic taurine peptide, J. Neurochem., 44: 752–754.CrossRefGoogle Scholar
  20. 20.
    Nakanishi, S. 1992, Molecular diversity of glutamate receptors and implications for brain function, Science, 258: 597–603.CrossRefGoogle Scholar
  21. 21.
    Newman, M., and McIlwain, H. 1977, Adenosine as a constituent of brain and of isolated cerebral tissues, and its relationship to the generation of adenosine 3’:5’-cyclic monophosphate, Biochem. J. 164: 131–146.Google Scholar
  22. 22.
    Olney, J.W., Feller, T., and DeGubareff, T. 1979, Acute dendrotoxic changes in the hippocampus of kainate treated rats, Brain Res. 176: 91–100.CrossRefGoogle Scholar
  23. 23.
    Rechardt, L., and Hervonen, H. 1985, Cytochemical demonstration of adenylate cyclase activity with cerium, Histochemistry, 82: 501–505.CrossRefGoogle Scholar
  24. 24.
    Schoepp, D.D., and Conn, P.J. 1993, Metabotropic glutamate receptors in brain function and pathology, Trends Pharmacol. Sci. 14: 13–20.CrossRefGoogle Scholar
  25. 25.
    Schwarcz, R., and Coyle, J.T. 1977, Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat, Life Sci., 20: 431–436.CrossRefGoogle Scholar
  26. 26.
    Seeburg, P.H. 1993, The TINS/TIPS lecture. The molecular biology of mammalian glutamate receptor channels, Trends Neurosci. 16: 359–365.CrossRefGoogle Scholar
  27. 27.
    Shimizu, H., Ichishita, H., and Odagiri, H. 1974, Stimulated formation of cyclic adenosine 3’, 5’-mono-phosphate by aspartate and glutamate in cerebral cortical slices of guinea pig, J. Biol. Chem., 249: 5955–5962.Google Scholar
  28. 28.
    Shimizu, H., Ichishita, H., and Umeda, I. 1975, Inhibition of glutamate-elicited accumulation of cyclic adenosine 3’, 5’-monophosphate in brain slices by a, co-diaminocarboxylic acids, Mol. Pharmacol. 11: 866–873.Google Scholar
  29. 29.
    Tanaka, T., Tanaka, S., Fujita, T., Takano, K., Fukuda, H., Sako, K., and Yonemasu, Y. 1991, Experimental complex partial seizures induced by a microinjection of kainic acid into limbic structures, Prog. Neurobiol., 38:317–334.CrossRefGoogle Scholar
  30. 30.
    Tomida, Y., and Kimura, H. 1987, Immunohistochemical and biochemical studies of substances with taurine-like immunoreactivity in the brain, Acta Histochem. Cytochem., 20: 31–40.CrossRefGoogle Scholar
  31. 31.
    Varga, V., Török, K., Feuer, L., Gulyás, J., and Somogyi, J. 1985, γ-Glutamyltransferase in the brain and its role in formation of γ-L-glutamyl-taurine, in: “Taurine: Biological Actions and Clinical Perspectives”, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, New York, pp. 115–125.Google Scholar
  32. 32.
    Varga, V., Janáky, R., Marnela, K.-M., Gulyás, J., Kontro, P., and Oja, S.S. 1989, Displacement of excitatory amino acid receptor ligands by acidic oligopeptides, Neurochem. Res. 14: 1223–1227.CrossRefGoogle Scholar
  33. 33.
    Varga, V, Janáky, R., Marnela, K.-M., Saransaari, P., and Oja, S.S. 1994, Interactions of γ-L-glutamyl-taurine with excitatory aminoacidergic neurotransmission, Neurochem. Res. 19: 243–248.CrossRefGoogle Scholar
  34. 34.
    Varga, V, Janáky, R., Saransaari, P., and Oja, S.S. 1994, Endogenous γ-L-glutamyl and β-L-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain, Neuropeptides, 27: 19–26.CrossRefGoogle Scholar
  35. 35.
    Wang, L.-Y., Salter, M.W., and MacDonald, J.F. 1991, Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases, Science, 253: 1132–1135.CrossRefGoogle Scholar
  36. 36.
    Werner, P., Voigt, M., Keinänen, K., Wisden, W., and Seeburg, P.H. 1991, Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells, Nature, 351: 742–744.CrossRefGoogle Scholar
  37. 37.
    Worley, P.F., Baraban, J.M., De Souza, E.B., and Snyder, S.H. 1986, Mapping second messenger systems in the brain: differential localization of adenylate cyclase and protein kinase C, Proc. Natl. Acad. Sci. USA, 83: 4053–4057.CrossRefGoogle Scholar
  38. 38.
    Ziegra, C.J., Willard, J.M., and Oswald, R.E. 1992, Coupling of a purified goldfish brain kainate receptor with a pertussis toxin-sensitive G protein, Proc. Natl. Acad. Sci. USA. 89: 4134–4138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. Varga
    • 1
    • 4
  • Réka Janáky
    • 1
  • A. Takáts
    • 2
  • S. S. Oja
    • 1
    • 3
  • R. Dohovics
    • 4
  • Leena Rechardt
    • 1
  1. 1.Tampere Brain Research CenterUniversity of Tampere Medical SchoolTampereFinland
  2. 2.Frederic Joliot-Curie National Research Institute for Radiobiology and RadiohygieneBudapestHungary
  3. 3.Department of Clinical PhysiologyTampere University HospitalTampereFinland
  4. 4.Department of Animal PhysiologyKossuth Lajos University of SciencesDebrecenHungary

Personalised recommendations