Taurine 2 pp 263-273 | Cite as

Modulation of Ca2+ and Na+ Transport by Taurine in Heart and Vascular Smooth Muscle

  • Ghassan Bkaily
  • George Haddad
  • Doris Jaalouk
  • Nadine Gros-Louis
  • Majda Taoudi Benchekroun
  • Radha Naik
  • Pierre Pothier
  • Pedro D’Orléans-Juste
  • Michel Bui
  • Shimin Wang
  • Nicholas Sperelakis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)

Abstract

Taurine has been reported to produce (i) a positive inotropic effect in heart muscle15, 20, (ii) beneficial effects against treatment of congestive heart failure1, and (iii) protective effects against Ca2+ overload27, 28. Compared to cardiac muscle, little is known on the action of taurine on vascular smooth muscle.

Keywords

Heart Cell Positive Inotropic Effect Physiological Salt Solution Chick Heart Embryonic Chick Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azuma, J., Taihara, K., Awata, N., Ohta, H., Sawamura, A., Harada, H., and Kishimoto, S., 1984, Beneficial effect of taurine on congestive heart failure induced by chronic aortic régurgitation in rabbits, Res. Commun. Chem. Pathol. Pharmacol. 45:261–270.Google Scholar
  2. 2.
    Baskin, S. I., and Finney, C.M., 1979, Effects of taurine and taurine analogue on the cardiovascular system, Gamyu Aminosan (Sulfur-containing Amino Acids) 2:1–18.Google Scholar
  3. 3.
    Bigger, J.T., and Mandel, W.J., 1970, Effect of lidocaine on the electrophysiological properties of ventricular muscle and Purkinje fibers, J. Clin. Invest. 46:63–77.CrossRefGoogle Scholar
  4. 4.
    Bigger, J.T., Basset, A.L. and Hoffman, B.F., 1968, Electrophysiological effects of diphenylhydantoin on canine Purkinje fibers, Circ. Res. 22:221–236.CrossRefGoogle Scholar
  5. 5.
    Bkaily, G., 1992, Single heart cells as model for studying cardiac toxicology. In: In vitro methods in toxicology, edited by G. Jolies and A. Cordier. Academic Press, London, pp. 289–334.Google Scholar
  6. 6.
    Bkaily, G., 1994, Regulation of R-type Ca2+ channels by insulin and ET-1 in VSM. In: Ionic channels in vascular smooth muscle, edited by G. Bkaily, Molecular Biol. Intelligence Unit. Austin, pp. 41-52.Google Scholar
  7. 7.
    Bkaily, G., Caillé, J.P., Payet, M.D., Peyrow, M., Sauvé, R., Renaud, J.F., Sperelakis, N., 1988, Bethanidine increases one type of K+ current and relaxes aortic muscle. Can. J. Pharmacol. 66:731–736.CrossRefGoogle Scholar
  8. 8.
    Bkaily, G., Chahine, M., Sperelakis, N., Yamamoto, T., 1988, Taurine increases one type of slow Na+ and Ca2+ currents in embryonic heart. J. Physiol. (Lond.) 406:91Google Scholar
  9. 9.
    Bkaily, G., Economos, D., Potvin, L., Ardilouze, J.L., Mariott, C., Corcos, J., Bonneau, D., and Fong, C.N., 1992, Blockade of insulin steady-state R-type Ca2+ channel by PN200-110 in heart and vascular smooth muscle. Mol. Cell. Biochem. 117:93–106.CrossRefGoogle Scholar
  10. 10.
    Bkaily, G., Gros-Louis, N., Naik, R., Jaalouk, D., Pothier, P., 1996, Implication of the nucleus in excitation contraction coupling of heart cells. Mol. Cell Biochem. (In press).Google Scholar
  11. 11.
    Bkaily, G., Jacques, D., Sculptoreanu, A., Yamamoto, T., Carrier, D., Vigneault, D., Sperelakis, N., 1991, Apamin, a highly potent blocker of the TTX-and Mn2+-insensitive fast transient Na+ current in young embryonic heart. J. Mol. Cell Cardiol. 23:25–39.CrossRefGoogle Scholar
  12. 12.
    Bkaily, G., Naik, R., D’Orléans-Juste, P., Wang, S., and Fong, C.N., 1995, Endothelin-1 activates the R-type Ca2+ channel in vascular smooth muscle cells. J. Cardiovas. Pharmacol. 26:S303–S306.Google Scholar
  13. 13.
    Bkaily, G., Perron, N., Wang, S., Sculptoreanu, A., Jacques, D., Ménard, D., 1993, Atrial natriuretic factor blocks the high-threshold Ca2+ current and increased K+ current in fetal single ventricular cells, J. Mol. Cell Cardiol. 25:1305–1316.CrossRefGoogle Scholar
  14. 14.
    Bkaily, G., Peyrow, M., Yamamoto, T., Sculptoreanu, A., Jacques, D., Sperelakis, N., 1986, Macroscopic Ca2+-Na+ and K+ currents in single heart and rabbit aortic cells. Mol. Cell. Biochem. 80:59–72.Google Scholar
  15. 15.
    Dietrich, J., and Diacono, J., 1971, Comparison between ouabain and taurine effects on isolated rat and guinea-pig hearts in low calcium medium, Life Sci. 10:499–507.CrossRefGoogle Scholar
  16. 16.
    Fabiato, A., and Fabiato, F., 1979, Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Lond.) 75:463–505.Google Scholar
  17. 17.
    Li, T., and Sperelakis, N., 1983, Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cAMP, Gpp(NH)p, and cholera toxin, Circ. Res. 52:111–117.CrossRefGoogle Scholar
  18. 18.
    Satoh, H., and Sperelakis, N., 1991, Actions of taurine, on fast Na+ current (INa) in embryonic chick ventricular myocytes, Faseb J. 5(6):A1742.Google Scholar
  19. 19.
    Satoh, H., and Sperelakis, N., 1991, Identification of the hyperpolarization-activated inward current in young embryonic chick heart myocytes, J. Develop. Physiol. 15:247–252.Google Scholar
  20. 20.
    Sawamura, A., Azuma, J., Harada, H., Hasegawa, H., Ogura, K., Sperelakis, N., and Kishimoto, S., 1983, Protection by oral pretreatment with taurine against the negative inotropic effects of low calcium medium on isolated perfused chick heart, Cardiovas. Res. 17:620–626.CrossRefGoogle Scholar
  21. 21.
    Sawamura, A., Sada., H., Azuma, J., Kishimoto, S., and Sperelakis, N., 1990, Taurine modulates ion influx through cardiac Ca2+ channels, Cell Calcium 11:251–259.CrossRefGoogle Scholar
  22. 22.
    Sawamura, A., Sperelakis, N., and Azuma, J., 1986, Protective effect of taurine against decline of cardiac slow action potentials during hypoxia. Eur. J. Pharm. 120:235–239.CrossRefGoogle Scholar
  23. 23.
    Sawamura, A., Sperelakis, N., Azuma, J., and Kishimoto, S., 1986, Effects of taurine on the electrical and mechanical activities of embryonic chick heart, Can. J. Physiol. Pharmacol. 64:649–655.CrossRefGoogle Scholar
  24. 24.
    Sperelakis, N., Satoh, H., and Bkaily, G., 1991, Taurine effects on ionic currents in myocardial cells. Adv. Exper. Med. Biol. 359:9–17.Google Scholar
  25. 25.
    Sperelakis, N., and Schneider, J.A., 1976, Ametabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell, Am. J. Cardiol. 37:1079–1085.CrossRefGoogle Scholar
  26. 26.
    Sperelakis, N., Yamamoto, T., Bkaily, G., Sada, H., Sawamura, A., and Azuma, J., 1989, Taurine effects on action potentials and ionic currents in chick embryonic cells. In: Taurine and the Heart, edited by H. Iwata, J.B. Lombardini, and T. Segawa, Kluwer Academic Pub., Boston, pp. 1–20.CrossRefGoogle Scholar
  27. 27.
    Takihara, K., Azuma, J., Awata, N., Ohta, H., Hamaguchi, T., Sawamura, A., Tanaka, Y., Kishimoto, S., and Sperelakis, N., 1986, Beneficial effect of taurine in rabbits with chronic congestive heart failure, Am. Heart J. 112:1278–1284.CrossRefGoogle Scholar
  28. 28.
    Takihara, K., Azuma, J., Awata, N., Ohta, H., Sawamura, A., Kishimoto, S., and Sperelakis, N., 1985, Taurine’s possible protective role in age-dependent response to calcium paradox, Life Sci. 37:1705–1710.CrossRefGoogle Scholar
  29. 29.
    Tsien, R.Y., and Rink, T.J., 1980, Neutral carrier ion-selective microelectrodes for measurements of intracellular-free calcium, Biochim. Biophys. Acta 559:623–638.Google Scholar
  30. 30.
    Vogel, S., and Sperelakis, N., 1981, Induction of slow action potentials by microiontophoresis of cyclic AMP into heart cells. J. Mol Cell Cardiol. 13:51–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ghassan Bkaily
    • 1
  • George Haddad
    • 1
  • Doris Jaalouk
    • 1
  • Nadine Gros-Louis
    • 1
  • Majda Taoudi Benchekroun
    • 1
  • Radha Naik
    • 1
  • Pierre Pothier
    • 1
  • Pedro D’Orléans-Juste
    • 2
  • Michel Bui
    • 1
  • Shimin Wang
    • 1
  • Nicholas Sperelakis
    • 3
  1. 1.Department of Physiology and Biophysics, Faculty of Medicine, MRCC Group in immuno-cardiovascular interactionUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of Pharmacology, Faculty of Medicine, MRCC Group in immuno-cardiovascular interactionUniversité de SherbrookeSherbrookeCanada
  3. 3.Department of Physiology and BiophysicsCollege of Medicine, University of CincinnatiCincinnatiUSA

Personalised recommendations