Comparison of an Immunohistochemical and a Histochemical Stain in Detection of Copper in Rat Tissues

  • J. E. Mullins
  • R. A. Fredrickson
  • I. C. Fuentealba
  • R. J. F. Markham

Abstract

Routine pathological diagnosis of hepatic copper (Cu) has traditionally depended upon histochemical stains such as rubeanic acid, rhodanine and orcein (1). The sensitivity and specificity of these stains are often unknown. In recent years, metallothionein (MT) has been used in immunohistochemical techniques, to indicate presence and distribution of heavy metals, in particular Cu, within biological tissues (2,3). Metallothionein (MT) is a low molecular weight (6000 D), cysteine-rich, cytoplasmic protein, with a high affinity for cadmium (Cd), Cu, zinc (Zn) and other heavy metals. It is thought to be involved in cellular detoxification due to metal sequestration (4). The purpose of this study was to compare MT immunostaining with rubeanic acid staining of Cu in normal and Cu-loaded rat tissues.

Keywords

Atomic Absorption Spectrophotometry Paneth Cell Segmental Distribution Hepatic Copper Cellular Detoxification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Goldfischer, H. Popper and I. Sternlieb, Am. J. Pathol. 99, 715–730 (1980).Google Scholar
  2. 2.
    L.M. Williams, H. Cunningham, A. Ghaffar, G.I. Riddoch, I. Bremner, Toxicology 55, 307–316(1989).CrossRefGoogle Scholar
  3. 3.
    W.E. Evering, S. Haywood, M.E. Elmes, B. Jasani and J. Trafford, J. Pathol. 160, 305–312 (1990).CrossRefGoogle Scholar
  4. 4.
    D.H. Hamer, Ann. Rev. Biochem. 55, 913–951 (1986).CrossRefGoogle Scholar
  5. 5.
    P.E. Olsson and C. Hogstrand, J. Chromatogr. 402, 293–299 (1987).CrossRefGoogle Scholar
  6. 6.
    J.S. Garvey, R.J. Vander Mallie and C.C. Chang, Methods Enzymol. 84, 121–138 (1982).CrossRefGoogle Scholar
  7. 7.
    I.I. Uzman, Lab. Invest. 5, 229–305 (1956).Google Scholar
  8. 8.
    I.C. Fuentealba, S. Haywood and J. Trafford, J. Comp. Pathol. 100, 1–11 (1989).CrossRefGoogle Scholar
  9. 9.
    M.E. Elmes, J.P. Clarkson, N.J. Mahy and B. Jasani, J. Pathol. 158, 131–137 (1989).CrossRefGoogle Scholar
  10. 10.
    A.G.E. Pearse, in Histochemistry, Theoretical and Applied, vol. 2, A.G.E. Pearse, ed., Churchill Livingstone, Edinburgh, U.K., pp. 991–995 (1985).Google Scholar
  11. 11.
    R.G. Thurman, F.C. Kauffrnan and K. Jugermann, Regulation of hepatic metabolism: Intra and intercellular compartmentation, Plenum Press, New York (1986).CrossRefGoogle Scholar
  12. 12.
    W.E. Evering, PhD thesis, University of Liverpool, UK (1989).Google Scholar
  13. 13.
    S. Haywood, J. Pathol. 145, 149–158 (1985).Google Scholar
  14. 14.
    S.R. Gooneratne, J. M.C.C. Howell and E. Aughey, J. Comp. Pathol. 96, 593–612 (1986).CrossRefGoogle Scholar
  15. 15.
    CD. Fuller, M.E. Elmes and B. Jasani, J. Pathol. 161, 167–172 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. E. Mullins
    • 1
  • R. A. Fredrickson
    • 2
  • I. C. Fuentealba
    • 1
  • R. J. F. Markham
    • 1
  1. 1.Atlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownCanada
  2. 2.Diagnostic Chemicals Ltd.CharlottetownCanada

Personalised recommendations