Quantitative Ultrasonic NDE with Models

  • Lester W. SchmerrJr.

Abstract

Previous chapters show that it is possible to model important factors that enter into an ultrasonic NDE measurement setup. These ultrasonic measurement models (and similar models being developed for other techniques, such as eddy currents and x-rays1 form the basis for a new quantitative NDE technology where entire NDE tests can be simulated and test parameters (including those associated with flaws) can be manipulated for engineering design and analysis. This new technology has a number of important practical applications.

Keywords

Effective Radius Efficiency Factor Edge Wave Quantitative Nondestructive Evaluation Backscatter Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Gray, T. A. Gray, N. Nakagawa, and R. B. Thompson, Models for predicting NDE reliability, in Metals Handbook, vol. 17, 9th ed., Nondestructive Evaluation and Quality Control (ASM International, Materials Park, Oh., 1989), pp. 702–15.Google Scholar
  2. 2.
    J. Krautkramer, British J. Appl. Phys. 10 (1959) 240.CrossRefGoogle Scholar
  3. 3.
    R. C. Olivers, L. Bosselaar, and P. R. Filmore, J. Acoust. Soc. Am. 68 (1980) 80.CrossRefGoogle Scholar
  4. 4.
    T. Lerch, L. W. Schmerr, and A. Sedov, Res. Nondestr. Eval. 8 (1996) 1.Google Scholar
  5. 5.
    L. W. Schmerr, S. J. Song, and H. Zhang, Model-based calibration of ultrasonic system responses for quantitative measurements, in Nondestructive Characterization of Materials, VI, (R. E. Green, Jr., K. J. Kozaczek, and C. O. Ruud, eds.) (Plenum, New York, (1994) pp. 111–18.Google Scholar
  6. 6.
    M. Abramowitz, and I. A. Segun, eds., Handbook of Mathematical Functions, (Dover, New York, 1965).Google Scholar
  7. 7.
    A. Jeffrey, Handbook of Mathematical Formulas and Integrals (Academic, San Diego, CA., 1995).Google Scholar
  8. 8.
    A. Sedov, L. W. Schmerr, and S. J. Song, J. Acoust. Soc. Am. 92 (1992) 478.CrossRefGoogle Scholar
  9. 9.
    S. J. Song, L. W. Schmerr, and A. Sedov, Res. Nondestr. Eval. 3 (1991) 201.Google Scholar
  10. 10.
    J. D. Aindow, A. Markiewicz, and R. C. Chivers, J. Acoust. Soc. Am. 78 (1985) 1519.CrossRefGoogle Scholar
  11. 11.
    E. L. Madsen, M. M. Goodsitt, and J. A. Zagzebski, J. Acoust. Soc. Am. 70 (1981) 1508.CrossRefGoogle Scholar
  12. 12.
    M. M. Goodsitt, E. L. Madsen, and J. A. Zagzebski, J. Acoust. Soc. Am. 71 (1982) 318.CrossRefGoogle Scholar
  13. 13.
    W. N. Cobb, J. Acoust. Soc. Am. 75 (1984) 72.CrossRefGoogle Scholar
  14. 14.
    J. Adach, and R. C. Chivers, Acustica 62 (1986) 66.Google Scholar
  15. 15.
    J. Adach, and R. C. Chivers, Acustica 70 (1990) 12.Google Scholar
  16. 16.
    J. Adach, and R. C. Chivers, Acustica 70 (1990) 135.Google Scholar
  17. 17.
    F. Amin, T. A. Gray, and F. J. Margetan, A new method to estimate the effective geometrical focal length and radius of ultrasonic focused probes, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1991), 10A, pp. 861–65.Google Scholar
  18. 18.
    T. A. Gray, Model-based characterization of planar and focused immersion ultrasonic transducers, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1995), 14A, pp. 1021–28.CrossRefGoogle Scholar
  19. 19.
    A. Sedov, L. W. Schmerr, and S. J. Song, Ultrasonic scattering models for standards: flat-bottom holes and spherical reflectors, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1991), 10A, pp. 59–66.Google Scholar
  20. 20.
    L.W. Schmerr and A. Sedov, A near-field measurement model for ultrasonic reference standards, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1991), 11 A, pp. 1191–98.Google Scholar
  21. 21.
    T. A. Gray, R. B. Thompson, and B. P. Newberry, Model-based ultrasonic NDE system qualification methodology, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1987), 6A, pp. 93–100.CrossRefGoogle Scholar
  22. 22.
    T. A. Gray, F. Amin, and R. B. Thompson, Application of ultrasonic POD models, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1988), 7B, pp. 1737–44.CrossRefGoogle Scholar
  23. 23.
    D. D. Bennink, and A. L. Pate, Investigation of scatter in ultrasonic responses caused by variability in transducer and material properties, in Review of Progress in Quantitative Nondestructive Evaluation C D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1988), 7A, pp. 621–28.Google Scholar
  24. 24.
    D. Utrata, and T. A. Gray, Use of ultrasonic modeling in the inspection of railway axles, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1991), 10A, pp. 621–28.Google Scholar
  25. 25.
    T. A. Gray, Ultrasonic measurement model for contact transducers on curved surfaces, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1994), 13B, pp. 2191–98.Google Scholar
  26. 26.
    J. D. Achenbach, and D. E. Budreck, 3-D modeling of ultrasonic scattering from intergranular stress corrosion cracks, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1987), 6A, pp. 87–92.CrossRefGoogle Scholar
  27. 27.
    T. A. Gray, R. B. Thompson, and B. P. Newberry, Applications of models for IGSCC inspection, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1987), 6A, pp. 93–100.CrossRefGoogle Scholar
  28. 28.
    F. J. Margetan, T. A. Gray, R. B. Thompson, and B. P. Newberry, A model for ultrasound transmission through graphite composite plates containing delaminations, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1988), 7B, pp. 1083–92.CrossRefGoogle Scholar
  29. 29.
    D. D. Bennink, and A. L. Pate, Reciprocity-based measurement models for ultrasonic NDE, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1989), 8A, pp. 843–48.Google Scholar
  30. 30.
    D. D. Bennink, and A. L. Pate, Ultrasonic transducer calibration for reciprocity-based methods, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1989), 8A, pp. 849–56.Google Scholar
  31. 31.
    A. S. Cheng, Ultrasonic reflection by a planar distribution of surface-breaking cracks, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1995), 14A, pp. 59–65.CrossRefGoogle Scholar
  32. 32.
    A. Temple, UK development in theoretical modeling for NDT, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1987), 6A, pp. 21–35.CrossRefGoogle Scholar
  33. 33.
    A. Lhemery, Impulse-response method to predict echo-responses from defects in solids: a first approach, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1995), 14A, pp. 115–122.CrossRefGoogle Scholar
  34. 34.
    R. Marklein, R. Barmann, and K. J. Langenberg, Ultrasonic modeling code EFIT as applied to inhomogeneous dissipative isotropic and anisotropic media, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1995), 14, pp. 251–258.CrossRefGoogle Scholar
  35. 35.
    T. A. Gray, The CAD/NDE interface—designing for inspectability, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1990), 9A, pp. 877–884.Google Scholar
  36. 36.
    L. W. Schmerr, and D. O. Thompson, NDE and design—a unified life-cycle engineering approach, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1993), 12B, pp. 2325–2331.CrossRefGoogle Scholar
  37. 37.
    L. W. Schmerr, and D. O. Thompson, NDE models and design—a unified life-cycle engineering approach, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1994), 13B, pp. 2183–2190.Google Scholar

Suggested Reading

  1. L. W. Schmerr, and A. Sedov, Res. Nondestr. Eval. 1 (1989) 181.Google Scholar
  2. L. W. Schmerr, T. P. Lerch, and A. Sedov, A focused transducer/scatterer model for ultrasonic reference standards, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1993), 12A, pp. 925–931.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lester W. SchmerrJr.
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations