Ocean Pulse pp 37-45 | Cite as

Aquaculture in the Sea

  • R. Billard

Abstract

The world’s oceans produce about 100 million metric tons of living resources, 85,000 metric tons of which is caught by the fisheries (a kind of hunting-gathering activity) of the world. Impressively, this harvest is half of the meat produced by domestic animals in the world (170 million tons). The world aquaculture production is significantly lower. Only 16 million tons, not including 10 million tons of algae, is produced annually (Table 1). In general, the total harvest over the past 15 years has increased in part due to a steady rise in aquaculture production (Figure 1).

Keywords

Open Water Pink Salmon Bluefin Tuna Recycle Water Aquaculture Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billard, R. (1995a) Les syste’mes de production aquacole et leur insertion dans l’environnement. Nouvelles des Sciences et des Technologies Bruxelles 13: 35–43.Google Scholar
  2. Billard, R. (1995b) Elements sur la biologie des esturgeons. La Peche Maritime, 1/2: 33–47.Google Scholar
  3. Billard, R., and Dabbadie, L. (1993) Production systems in aquaculture. Proc. 4th Nat. Symp. Oceanogr. Fish. 405-417.Google Scholar
  4. Blancheton, J.P. (1998) “Intensive land based aquaculture in closed system.” In: F. Takashima, (ed) “A new Paradigm for aquaculture,” Kobe, Japan (in press).Google Scholar
  5. Coves, D., Gasset, E. (1996) Intensive recirculating production system in Sea-bass Dicentrarchus labr EAS conference Future trends of Aquaculture Development in Eastern Europe Budapest 1–5 (September 1996): 22-23.Google Scholar
  6. Deslous-Paoli, J.M., Heral, M. (1984) Transferts e’nerge’tiques entre l’huitre Crassostea gigas de un an et la nourriture potentielle disponible dans l’eau d’un bassin ostre’icole. Haliotis 14: 79–90.Google Scholar
  7. Doumenge, F. (1996) L’interface pishe/aquaculture coope’ration, coexistence ou conflit. La Peche Maritime 1-2: 27–35.Google Scholar
  8. Handy, R.D., Poxton, M.G. (1993) Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish Biol. Fish., 3: 205–241.CrossRefGoogle Scholar
  9. Josupeit, H. (1995) European markets for seabass, seabream and turbot. Aquaculture Europe EAS Gent, Belgium, 20: 6–12.Google Scholar
  10. Mahmoud, A., Masuda, H. (1991) An economic review of artificial salmon propagation and management operations in Japan. Bull. Fac. Hokkaido Univ., 42(2): 58–79.Google Scholar
  11. Stottup, J. (1996) Stocking: actual situation and prospects for the marine environment. Aquaculture Europe EAS Gent, Belgium, 20(3): 6–11.Google Scholar
  12. Ungson, J.R., Matsuda, Y., Hirata, H., Shuhara H. (1993) An economic assessment of the production and release of marine fish fingerlings for sea ranching. Aquaculture, 118: 169–181.CrossRefGoogle Scholar
  13. Van Rijn, J. (1996) The potential for integrated biological treatment systems in recirculating fish culture—A review. Aquaculture, 139: 181–201.CrossRefGoogle Scholar
  14. Van Tilbeurgh, V. (1994) L’huitre, le biologiste et l’ostrees culteur. Lectures entrecroises du milieu naturel. L’Harmattan Paris 248 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Billard
    • 1
  1. 1.Muséum National d’Histoire NaturelleLaboratoire d’IchtyologieParis, Cedex 05France

Personalised recommendations