Development of a New Class of Nanoparticles which Avoid Phagocytosis by Inhibiting Complement Activation

  • Catherine Passirani
  • Gillian Barratt
  • Jean-Philippe Devissaguet
  • Denis Labarre
Chapter
Part of the NATO ASI Series book series (NSSA, volume 300)

Abstract

The development of colloidal systems (liposomes, nanoparticles) as efficient drug carriers is limited by their distribution within the organism. It is now well established that after intravenous administration these particles are rapidly opsonized by plasma proteins. These adsorbed proteins promote recognition and uptake by cells of the mononuclear phagocyte system (MPS), particularly the Küpffer cells of the liver, but also spleen and bone-marrow macrophages (Puisieux et al., 1994). Activation of complement, especially by the alternative pathway, plays an important role in the processes of opsonization and phagocytosis. If colloidal drug carrier systems are to remain in the blood compartment for any length of time and deliver their contents to organs other than the MPS, strategies for avoiding opsonization must be developed.

Keywords

Complement Activation Alternative Pathway Complement Cascade Mononuclear Phagocyte System Sulfated Glucosamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T.M. and Chonn, A., 1987, Large unilamellar liposomes with low uptake into the reticulo-endothelial system, FEBS Lett. 223:42.PubMedCrossRefGoogle Scholar
  2. Allen, T.M., Hansen, C, Martin, F., Redemann, C. and Yau-Young, A., 1991, Liposomes containing synthetic lipids derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim. Biophys. Acta 1066:29.PubMedCrossRefGoogle Scholar
  3. Baker, P., Lint, T., McLeod, B., Behrends, C. and Gewürz, H., 1975, Studies on the inhibition of C5-6-induced lysis (reactive lysis) VI. Modulation of C5-6-induced lysis by polyanions and polycations, J. Immunol. 114:554.PubMedGoogle Scholar
  4. Couvreur, P., Grislain, L., Lenaerts, V., Brasseur, F., Guiot, P., and Biornacki, A., 1986, Biodegradable polymeric nanoparticles as drug carriers for antitumor agents, in: Polymeric Nanoparticles and Microspheres, P. Guiot and P. Couvreur, eds., CRC Press, Boca Raton.Google Scholar
  5. Carreno, M.P., Labarre, D., Jozefonvicz, M. and Kazatchkine, M.D. 1988a, The ability of Sephadex to activate human complement is suppressed in specifically substituted functional Sephadex derivatives, Molec. Immunol. 25:165.CrossRefGoogle Scholar
  6. Carreno, M.P., Maillet, F., Labarre, D., Jozefonvicz, M. and Kazatchkine, M.D. 1988b, Specific antibodies enhance Sephadex-induced activation of the alternative complement pathway in human serum, Biomaterials 9:514.PubMedCrossRefGoogle Scholar
  7. Ekre, H.P., Naparstek, Y., Lider, O., Hydén, P., Hägermark, Ö, Nilsson, T., Vlodavsky, I. and Cohen, I., 1992, Anti-inflammatory effects of heparin and its derivatives inhibition of complement and of lymphocyte migration, in: Heparin and Related Polysaccharides. D.A. Lane, ed., Plenum Press, New York.Google Scholar
  8. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R., 1994, Biodegradable long-circulating polymeric nanospheres, Science 263:1600.PubMedCrossRefGoogle Scholar
  9. Gregoriadis, G., McCormack, B., Wang, Z. and Lifely, R., 1993, Polysialic acids: potential in drug delivery, FEBSLett. 315:271.PubMedCrossRefGoogle Scholar
  10. Huve P., 1994, Comprendre et éviter la capture des nanoparticules de poly (acide-lactique) par le système des phagocytes mononucléaires, Ph.D. Thesis, Université Paris-Sud, Sci. Pharm.Google Scholar
  11. Illum, L., Davis, S.S., Wilson, C.G., Thomas, N.W., Firer, M. And Hardy, J.G., 1982, Blood clearance and organ disposition of intravenously administered colloidal particles: the effects of particle size, nature and shape, Int. J. Pharm. 12:135.CrossRefGoogle Scholar
  12. Jeon, S.I., Lee, J.H., Andrade, J.D. and De Germes, P.G., 1991, Protein-surface interactions in the presence of polyethylene oxide; 1. Simplified theory, J. Colloid Interf. Sci. 142:149.CrossRefGoogle Scholar
  13. Kazatchkine, M.D., Fearon, D., Silbert, J. and Austen, K., 1979, Surface-associated heparin inhibits zymosan-induced activation of the human alternative pathway by augmenting the regulatory action of the control proteins on particle-bound C3b, J. Exp. Med. 150:1202.PubMedCrossRefGoogle Scholar
  14. Kazatchkine, M.D., Fearon, D., Metcalfe, D., Rosenberg, R. and Austen, K., 1981, Structural determinants of the capacity of heparin to inhibit the formation of the amplification C3 convertase. J. Clin. Invest. 67:223.PubMedCrossRefGoogle Scholar
  15. Labarre, D.J., 1990, Heparin-like polymer surfaces: control of coagulation and complement activation by insoluble functionalized polymers, Int. J. Artif Organs 13:651.PubMedGoogle Scholar
  16. Larsson, R., Selén, G., Björklund, H. and Fagerholm, P., 1989, Intraocular PMMA lenses modified with surface-immobilized heparin: evaluation of biocompatibility in vitro and in vivo. Biomaterials 10:511.PubMedCrossRefGoogle Scholar
  17. Laurell, C.B., 1966, Quantitative estimation of proteins by electrophoresis in agarose gels containing antibodies, Anal. Biochem. 15:45.PubMedCrossRefGoogle Scholar
  18. Linhardt, R., Rice, K., Kim, Y., Engelken, J. and Weiler, J., 1988, Homogeneous, structurally defined heparinoligosaccharides with low anticoagulant activity inhibit the generation of the amplification pathway C3 convertase in vitro, J. Biol. Chem. 263:13090.PubMedGoogle Scholar
  19. Maillet, F., Kazatchkine, M.D., Glotz, D., Fischer, E. and Rowe, M., 1983, Heparin prevents formation of the human C3 amplification convertase by inhibiting the binding site for B on C3b, Molec. Immunol. 20: 1401.CrossRefGoogle Scholar
  20. Maillet, F., Petitou, M., Choay, J. and Kazatchkine, M.D. 1988, Structure-function relationships in the inhibitory effect of heparin on complement activation: independency of the anti-coagulant and anti-complementary sites on the heparin molecule, Molec. Immunol. 25:917.CrossRefGoogle Scholar
  21. Maillet, F. and Kazatchkine, M.D. (1991) Specific antibodies enhance alternative complement pathway activation by cuprophane, Nephrol. Dial. Transplant. 6:193.PubMedCrossRefGoogle Scholar
  22. Marconi, W., Benvenuti, F. and Piozzi, A., 1997, Covalent bonding of heparin to a vinyl copolymer for biomédical applications, Biomaterials 18:885.PubMedCrossRefGoogle Scholar
  23. Mayer, M.M., 1961, Complement and complement fixation, in: Experimental Immunochemistry, EA. Kabat and M.M. Mayer, eds., 2nd Edn, Thomas, Springfield.Google Scholar
  24. Nilsson, U.R., Storm, K.E., Elwing, H. and Nilsson, B., 1993, Conformational epitopes of C3 reflecting its mode of binding to an artificial polymer surface, Mol. Immunol. 30:211.PubMedCrossRefGoogle Scholar
  25. Olivier J.C., Vauthier, C, Tarverna, M., Puisieux, F., Ferrier, D. and Couvreur, P., 1996, Stability of orosomucoid-coated polyisobutylcyanoacrylate nanoparticles in the presence of serum, J. Control. Rel. 40:157.CrossRefGoogle Scholar
  26. Pangburn, M., Atkinson, M. and Meri, S., 1991, Localization of the heparin-binding site on complement factor H, J. Biol. Chem. 266:16847.PubMedGoogle Scholar
  27. Patton, W.A. II, Granzow, CA., Getts, L.A., Thomas, S.C., Zotter, L.M., Gunzel, K.A. and Lowe-Krentz, L.J., 1995, Identification of a heparin-binding protein using monoclonal antibodies that block heparin binding to porcine aortic endothelial cells, Biochem. J. 311:461.PubMedGoogle Scholar
  28. Pekna, M., Larsson, R., Formgren, B., Nilsson, U.R. and Nilsson, B., 1993, Complement activation by polymethylmethacrylate minimized by end-point heparin attachment, Biomaterials 14:189.PubMedCrossRefGoogle Scholar
  29. Puisieux, F., Barratt, G., Couarraze, G., Couvreur, P., Devisssaguet, J.P., Dubernet, C, Fattal, E., Fessi, H., Vauthier, C. and Benita, S., 1994, Polymeric micro-and nanoparticles as drug carriers, in: Polymeric Biomaterials, S. Dumitriu, ed., M. Dekker, New York.Google Scholar
  30. Riesenfeld, J, Olsson, P., Sanchez, J. and Molines, E. Surface modification with functionally active heparin. Med. Dev. Tech. March 1995:24.Google Scholar
  31. Sahu, A. and Pangburn, M. K., 1993, Identification of multiple sites of interaction between heparin and the complement system. Molec. Immunol. 30:679.CrossRefGoogle Scholar
  32. Sim, E., Parker, K.E. and Jones, A., 1993, Nucleophilic compounds acting on C3 and C4 in: Activators and Inhibitors of Complement, Sim R.B. Ed., Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  33. Tröster, S.D. and Kreuter, J., 1992, Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles, J. Microencap. 9:19.CrossRefGoogle Scholar
  34. Verrecchia, T., Spenlehauer G., Bazile, D.V., Murry-Brelier, A., Archimbaud, Y. and Veillard, M, 1995, Non-stealth (poly(lactic acid / albumin)) and stealth (poly (lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers, J. Control. Rel. 36:49.CrossRefGoogle Scholar
  35. Vittaz, M., Bazile, D., Spenlehauer, G., Verracchia, T., Veillard, M., Puisieux, F. and Labarre, D., 1996, Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators, Biomaterials 17:1575.PubMedCrossRefGoogle Scholar
  36. Weiler, J. and Linhardt, R., 1989, Comparison of the activity of polyanions and polycations on the classical and alternative pathways of complement. Immunopharmacology 17:65.PubMedCrossRefGoogle Scholar
  37. Weiler, J., Yurt, R., Fearon, D. and Austen, K., 1978, Modulation of the formation of the amplification convertase of complement C3bBb, by native and commercial heparin, J. Exp. Med. 147:409.PubMedCrossRefGoogle Scholar
  38. Weiler, J., Edens, R., Linhardt, R. and Kapelanski, D., 1992, Heparin and modified heparin inhibit complement activation in vivo, J. Immunol. 148:3210.PubMedGoogle Scholar
  39. Woodle, M.C. and Lasic, D.D., 1992, Sterically stabilized liposomes, Biochim. Biophys. Acta 1113:171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Catherine Passirani
    • 1
  • Gillian Barratt
    • 1
  • Jean-Philippe Devissaguet
    • 1
  • Denis Labarre
    • 1
  1. 1.URA CNRS 1218, Centre d’Etudes PharmaceutiquesUniversité Paris-SudChatenay-MalabryFrance

Personalised recommendations