Targeting of Drugs 6 pp 95-107 | Cite as
Applications of Liposome Technology to Overcome Multidrug Resistance in Solid Tumors
Abstract
A significant obstacle to chemotherapy of many human malignancies is the development of drug resistance. Multidrug resistance (MDR) is defined as the ability of tumor cells to develop resistance to the cytotoxic effects of a variety of chemically unrelated chemotherapeutic agents. Several mechanisms have been proposed to explain this phenomenon; however, the P-glycoprotein (PGP) based MDR phenotype has received the most attention and has been correlated with poor patient outcome for a number of tumor types. Conventional strategies employed for overcoming MDR involve the use of a PGP inhibitor coadministered with the anticancer agent. However, progress in this area has been hindered by the relatively low specificity of PGP modulators for tumor tissue. This has resulted in problems associated with inherent modulator toxicity as well as modulator induced changes in anticancer drug pharmacokinetics. Several avenues have been pursued using liposome technology to overcome these difficulties. This review summarizes some of the work done in this area and how long circulating non-leaky liposomes may be applied to circumvent adverse drug-drug interactions between MDR modulators and anticancer drugs, resulting in effective therapy of MDR in solid tumors.
Keywords
Anticancer Drug Multidrug Resistance Maximum Tolerate Dose Liposomal Doxorubicin Residual Resistance FactorPreview
Unable to display preview. Download preview PDF.
References
- Ahmad, I., Longenecker, M., Samuel, J., and Allen, T. M., 1993, Antibody-targeted delivery of doxorubicin entrapped in sterically stabilzed liposomes can eradicate lung cancer in mice, Cancer Res., 53:1484.PubMedGoogle Scholar
- Alahari, S.K., Dean, N. M., Fisher, M. H., Delong, R., Manoharan, M, Tivel, K. L., and Juliano, R. L., 1996, Inhibition of expression of the multidrug resistance associated P-glycoprotein by phosphorothioate and 5’ cholesterol-conjugated phosphorothioate antisense oligonucleotides, Mol. Pharmacol., 50:808.PubMedGoogle Scholar
- Allen, T. M., and Hansen, C, 1991, Pharmacokinetics of stealth versus conventional liposomes: effect of dose, Biochim. Biophys. Acta, 1068:133.PubMedCrossRefGoogle Scholar
- Almquist, K. C, Loe, D. W., Hipfner, D. R., Mackie, J. E., Cole, S. P., and Deeley, R. G., 1995, Characterization of the M(r) 190,000 multidrug resistance protein (MRP) in drug selected and transfected human tumor cell, Cancer Res., 55:102.PubMedGoogle Scholar
- Batist, G., Tulpule, A., Sinha, B. K., Kakti, A. G., Myers, C. E., and Cowan, K. H., 1986, Overexpression of a novel anionic glutathione transferase in multidrug resistant human breast cancer cells, J Biol Chem., 33:15544.Google Scholar
- Boote D.J., Dennis I.F., Twentyman P.R., Osborne R.J., Laburte C, Hensel S., et al., 1996, Phase I study of etoposide with PSC-833 as a modulator of multidrug resistance in patients with cancer, J. Clin. Oncol., 14:610.PubMedGoogle Scholar
- Chan, H. S., Thorner, P. S., Haddad, G., DeBoer, G., Gallie, B. L., and Ling, V., 1993, Multidrug resistance in cancers of childhood: clinical relevance and circumvention, Cancer Res., 41:1967.Google Scholar
- Chan, H. S., Thorner, P., Haddad, G., and Ling, V., 1990, Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood, J. Clin. Oncol, 8:689.PubMedGoogle Scholar
- Choice, E., Masin, D., Bally, M. B., Meloche, M., and Madden, T. D., 1995, Liposomal cyclosporine. Comparison of drug and lipid carrier pharmacokinetics and biodistribution, Transplantation, 60:1006.PubMedGoogle Scholar
- Cole, S.P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C, Stewart, A. J., Kurz, E. U., Duncan, A. M., and Deeley, R. G., 1992, Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line, Science, 258:1650.PubMedCrossRefGoogle Scholar
- Colombo T., Paz O. G., and D’lncalci M., 1996, Distribution and activity of doxorubicin combined with SDZ PSC 833 in mice with P388 and P388/DOX leukemia, Br. J. Cancer, 73:866.PubMedCrossRefGoogle Scholar
- Erlichman C, Moore M., Thiessen J., De Angelis C, Goodman P., and Manzo J., 1994, A Phase I trial of doxorubicin (DOX) and PSC 833, a modulator of multidrug resistance (MDR), Anti-Cancer Drugs, 5:42.CrossRefGoogle Scholar
- Fan, D., Bucana, CD., O’Brian, C. A., Zwelling, L.A., Seid, C, and Fidler, I.J., 1990, Enhancement of murine tumor cell sensitivity to adriamycin by presentation of the drug in phosphatidylcholine-phosphatidylserine liposomes, Cancer Res., 50:3619.PubMedGoogle Scholar
- Fan D., Beltran P.J., and O’Brien CA., 1994, Reversal of multidrug resistance, in: “Reversal of Multidrug Resistance in Cancer”, J. A. Kellen (Ed.), CRC Press, Boca Raton.Google Scholar
- Forssen, E. A., Male-Brune, R., Adler-Moore, J. P., Lee, M. J., Schmidt, P. G., Krasieva, T. B., Shimizu, S., and Tromberg, B. J., 1996, Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue, Cancer Res., 56:2066.PubMedGoogle Scholar
- Gabizon, A., 1992, Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long circulating liposomes, Cancer Res., 52:891.PubMedGoogle Scholar
- Gabizon, A., and Papahadjopolous, D., 1988, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. USA, 85:6949.PubMedCrossRefGoogle Scholar
- Gabizon, A., Barenholz, Y., and Bialer, M., 1993, Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs, Pharm. Res., 10:703.PubMedCrossRefGoogle Scholar
- Giaccone, G., Gazdar, A. F., Beck, H., Zunino, F., and Capranico, G., 1992, Multidrug sensitivity phenotype of human lung cancer cells associated with topoisomerase II expression, Cancer Res., 52:1666.PubMedGoogle Scholar
- Gokhale, P. C, Radhakrishnan, B., Husain, S. R., Abernethy, D. R., Sacher, R., Dritschilo, A., and Rahman, A., 1996, An improved method of encapsulation of doxorubicin in liposomes: pharmacological, toxicological, and therapeutic evaluation, Br. J. Cancer, 74:43.PubMedCrossRefGoogle Scholar
- Gonzalez O., Colombo T., De Fusco M., Imperatori L., Zucchetti M., and D’lncalci M., 1995, Changes in doxorubicin distribution and toxicity in mice pretreated with the cyclosporin analogue SDZ PSC 833, Cancer Chemother. Pharmacol, 36:335.PubMedCrossRefGoogle Scholar
- Grant, C E., Valdimarsson, G., Hipmer, D. R., Almquist, K. C, Cole, S. P., and Deeley, R. G., 1994, Overexpression of multidrug resistance-associated protein increases resistance to natural product drugs, Cancer Res., 54:357.PubMedGoogle Scholar
- Haak, H. R., van Seters, A. P., Moolenaar, A. J., and Fleuren, G. J., 1993, Expression of P-glycoprotein in relation to clinical manifestation, treatment and prognosis of adrenocortical cancer, Eur. J. Cancer, 29A:1036.PubMedCrossRefGoogle Scholar
- Haber, M., Norris, M. D., Kavallaris, M., Bell, D. R., Davey, R. A., White, L., and Stewart, B. W., 1989, Atypical multidrug resistance in a therapy-induced drug resistant human leukemia cell line (LALW-2): resistance to vinca alkaloids independent of P-glycoprotein, Cancer Res., 49:5281.PubMedGoogle Scholar
- Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S., and Allen, T. M., 1995, Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison, and optimization of coupling procedures, Biochim. Biophys. Acta, 1239:133.PubMedCrossRefGoogle Scholar
- Hu, Y. P., Henry-Toulme, N., and Robert, J., 1995, Failure of liposome encapsulation of doxorubicin to circumvent multidrug resistance in an in vitro model of rat glioblastoma cells, Eur. J. Cancer, 31A:389.PubMedCrossRefGoogle Scholar
- Huang, S. K., Mayhew, E., Gilani, S., Lasic, D. D., Martin, F. J., and Papahadjopoulos, D., 1992, Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma, Cancer Res., 52:6744.Google Scholar
- Juliano, R. L., and Ling, V., 1976, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants, Biochem Biophys Acta., 455:152.PubMedCrossRefGoogle Scholar
- Kartner, N., Riordan, J. R., and Ling, V., 1983, Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines, Science, 221:1285.PubMedCrossRefGoogle Scholar
- Keller R.P., Altermatt H.J., Donatsch P., Zihlmann H., Laissue J.A., and Hiestand P.C., 1992, Pharmacologic interactions between the resistance-modifying cyclosporine SDZ PSC 833 and etoposide (VP 16-213) enhance in vivo cytostatic activity and toxicity, Int. J. Cancer, 51:433.PubMedCrossRefGoogle Scholar
- Keller R.P., Altermatt H.J., Nooter K., Poschmann G., Laissue J.A., Bollinger P., et al., 1992, SDZ PSC 833, a non-immunosuppressive cyclosporine: Its potency in overcoming P-glycoprotein mediated multidrug resistance of murine leukemia, Int. J. Cancer, 50:593.PubMedCrossRefGoogle Scholar
- Kiehntopf, M., Brach, M.A., Licht, T., Petschauer, S., Karawajew, L., Krischning, C, and Herrmann, F., 1994, Ribozyme-mediated cleavage of the MDR-1 transcript restores chemosensitivity in previously resistant cancer cells, EMBO J., 13:4645.PubMedGoogle Scholar
- Krishna, R., de Jong, G., and Mayer, L. D., 1997, Pulsed exposure of SDZ PSC 833 to multidrug resistant P388/ADR and MCF7/ADR cells in the absence of anticancer drugs can fully restore sensitivity to doxorubicin, Anticancer Res., 17:3329.PubMedGoogle Scholar
- Krishna, R., and Mayer, L.D., 1997, Liposomal doxorubicin circumvents PSC 833-free drug interactions, resulting in effective therapy of multidrug resistant solid tumors, Cancer Res., 57:5246.PubMedGoogle Scholar
- Krishnamachary, N., and Center, M. S., 1992, Detection and characterization of membrane protein changes in multidrug resistant HL-60 cells, Oncology Res., 4:23.Google Scholar
- Lee, R.J., and Low, P.S., 1995, Folate-mediated tumor cell targeting of liposome-entrapped doxoubicin in vitro, Biochim. Biophys. Acta, 1233:134.PubMedCrossRefGoogle Scholar
- Ling, V., and Thompson, L. H., 1974, Reduced permeability in CHO cells as a mechanism of resistance to colchicine, J Cell Physiol., 83:103.PubMedCrossRefGoogle Scholar
- Lopes de Menezes, D. E., Pilarski, L. M., and Allen, T. M., 1995, Selective cytotoxicity of immunoliposomal doxorubicin to B lympocytes, Proc. AACR, 36:A1825.Google Scholar
- Ludescher, C, Hilbe, W., Eisterer, W., Preuss, E., Huber, C, Gotwald, M., Hofmann, J., and Thaler, J., 1993, Activity of P-Glycoprotein in B-cell chronic lymphocytic leukemia determined by a flow cytometry assay, J. Natl. Cancer Inst., 85:1751.PubMedCrossRefGoogle Scholar
- Marie, J., Faussat-Suberville, A., Zhou, D., and Zittoun, R., 1993, Daunorubicin uptake by leukemic cells: correlations with treatment outcome and mdrl expression, Leukemia, 7:825.PubMedGoogle Scholar
- Marjan, J., Charrios, G., Lopes de Menezes, D., and Allen, T. M., 1996, Antibody-mediated targeting of liposomal doxorubicin to lymphoblastic cells can reverse multidrug resistance, Proc. AACR, 37:A2103.Google Scholar
- Mayer L.D., Bally M.B., Cullis P.R., Wilson S.L., and Emerman J.T., 1990, Comparison of free and liposomal encapsulated doxorubicin tumor drug uptake and antitumor efficacy in the SC1 15 murine mammary tumor, Cancer Lett., 53:183.PubMedCrossRefGoogle Scholar
- Mayer L.D., Tai L.C.L., Ko D.S.C., Masin D., Ginsberg R.S., Cullis P.R., et al., 1989, Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice, Cancer Res., 49:5922.PubMedGoogle Scholar
- Mayer, L. D., Masin, D., Nayar, R., Boman, N. L., and Bally, M. B., 1995, Pharmacology of liposomal vincristine in mice bearing L1210 ascitic and B16/BL6 solid tumors, Br. J. Cancer, 71:482.PubMedCrossRefGoogle Scholar
- Mayhew, E.G., Lasic, D., Babbar, S., and Martin, F J., 1992, Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycolderivatized phospholipid, Int. J. Cancer, 51:302.PubMedCrossRefGoogle Scholar
- Merlin, J. L., Marchai, S., Ramacci, C, Notter, D., and Vigneron, C, 1993, Antiproliferative activity of thermosensitive liposome-encapsulated doxorubicin combined with 43 degrees C hyperthermia in sensitive and multidrug resistant MCF7 cells, Eur. J. Cancer, 29A:2264.PubMedCrossRefGoogle Scholar
- Oudard, S., Thierry, A., Jorgensen, T. J., and Rahman, A., 1991, Sensitization of multidrug resistant colon cancer cells to doxorubicin encapsulated in liposomes, Cancer Chemother. Pharmacol, 28:259.PubMedGoogle Scholar
- Ouyang, C., Choice, E., Holland, J., Meloche, M., and Madden, T. M., 1995, Liposomal cyclosporine. Characterization of drug incorporation and interbilayer exchange, Transplantation, 60:999.PubMedGoogle Scholar
- Papahadjopoulos, D., Allen, T. M, Gabizon, A., Mayhew, E., Mathay, K., Huang, S. L., Lee, K.-D., Woodle, M. C, Lasic, D. D., Redemann, C, and Martin, F. J., 1991, Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc. Natl. Acad. Sci. USA, 88:11460.PubMedCrossRefGoogle Scholar
- Pourtier-Manzanedo A., Didier A., Froidevaux S., and Loor F., 1995, Lymphotoxicity and myelotoxicity of doxorubicin and SDZ PSC 833 combined chemotherapies for normal mice, Toxicology, 99:207.PubMedCrossRefGoogle Scholar
- Rahman, A., Husain, S. R., Siddiqui, J., Verma, M., Agresti, M, Center, M., Safa, A. R., and Glazer, R. I., 1992, Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells, J. Natl. Cancer Inst., 84:1909.PubMedCrossRefGoogle Scholar
- Riordan, J. R., and Ling, V., 1979, Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability, J Biol Chem., 254:12701.PubMedGoogle Scholar
- Ross, D. D., Wooten, P. J., Sridhara, R., Ordonez, J. V., Lee, E. J., and Schiffer, C. A., 1993, Enhancement of daunorubicin accumulation, retention, and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukemia, Blood, 82:1288.PubMedGoogle Scholar
- Scheithauer, W., Schenk, T., and Czejka, M., 1993, Pharmacokinetic interaction between epirubicin and the multidrug resistance reverting agent D-verapamil, Br. J. Cancer, 68:8.PubMedCrossRefGoogle Scholar
- Sela, S., Husain, S. R., Pearson, J. W., Longo, D. L., and Rahman, A., 1995, Reversal of multidrug resistance in human colon cancer cells expressing the human MDR1 gene by liposomes in combination with monoclonal antibody or verapamil, J. Natl. Cancer Inst., 87:123.PubMedCrossRefGoogle Scholar
- Slater, L. M., Murray, S. L., Wetzel, M. W., Sweet, P., and Stupeck, M., 1986, Verapamil potentiation of VP-16-213 in acute lymphatic leukemia and reversal of pleiotropic drug resistance, Cancer Chemother. Pharmacol, 16:50.PubMedCrossRefGoogle Scholar
- Storm, G., Bakker-Woudenberg, I. A., Woodle, M. C, Blume, G., Nassander, U. K., Vingerhoeds, M. H., Haisma, H., and Crommelin, D. J. A., 1994, Liposomal drug delivery: possibilities for manipulation, in Targeting of drugs 4: Advances in System Constructs, G. Gregoriadis, B. McCormack and G. Poste (Eds.), Plenum Press, New York.Google Scholar
- Sugawara, I., 1990, Expression and functions of P-glycoprotein (mdrl gene product) in normal and malignant tissues, Acta Pathol. Jap., 40:545.Google Scholar
- Suzuki, S., Inoue, K., Hongoh, A., Hashimoto, Y., and Yamazoe, Y., 1997, Modulation of doxorubicin resistance in a doxorubicin-resistant human leukemia cell by an immunoliposome targeting transferring receptor, Br. J. Cancer, 76:83.PubMedCrossRefGoogle Scholar
- Thierry, A. R., Dritschilo, A., and Rahman, A., 1992, Effect of liposomes on P-glycoprotein function in multidrug resistant cells, Biochem. Biophys. Res. Comm., 187:1098.PubMedCrossRefGoogle Scholar
- Thierry, A. R., Rahman, A., and Dritschilo, A., 1993, Overcoming multidrug resistance in human tumor cells using free and liposomally encapsulated antisense oligonucleotides, Biochem. Biophys. Res. Comm., 190:952.PubMedCrossRefGoogle Scholar
- Thierry, A. R., Rahman, A., and Dritschilo, A., 1994, A new procedure for the preparation of liposomal doxorubicin: biological activity in multidrug-resistant tumor cells. Cancer Chemother. Pharmacol, 35:84.PubMedCrossRefGoogle Scholar
- Tsuruo, T., Iida, H., Kitatani, Y., Yokota, K., Tsukagoshi, S., and Sakurai, Y., 1982, Enhancement of vincristine-and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin, Biochem Pharmacol, 31:3138.PubMedCrossRefGoogle Scholar
- Tsuruo, T., Iida, H., Naganuma, K., Tsukagoshi, S., and Sakurai, Y., 1983, Promotion of verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug, Cancer Res., 43:808.PubMedGoogle Scholar
- Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y., 1981, Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil, Cancer Res., 41:1967.PubMedGoogle Scholar
- Van Hossel Q.G.C.M., Steerenberg P.A., Crommelin D.J.A., van Dijk A., van Oort W., Klein S., et al., 1984, Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of DOX entrapped in stable liposomes in the LOU/M Ws1 rat, Cancer Res., 44:3698.Google Scholar
- Vergier, B., Cany, L., Bonnet, F., Robert, J., de Mascarel, A., and Coindre, J. M., 1993, Expression of MDR1/P-glycoprotein in human sarcomas, Br. J. Cancer, 68:1221.PubMedCrossRefGoogle Scholar
- Versantoort, C. H. M., Broxterman, H. J., Pinedo, H. M., de Vries, E. G. E., Feller, N., Kupier, C. M., and Lankelma, J., 1992, Energy-dependent processes involved in reduced drug accumulation in multidrug resistant human lung cancer cell lines without P-glycoprotein expression, Cancer Res., 52:17.Google Scholar
- Watanabe T., Tsuge H., Oh-hara T., Naito M., and Tsuruo T., 1995, Comparative study on reversal efficacy of SDZ PSC 833, cyclosproin A and verapamil on multidrug resistance in vitro and in vivo, Acta Oncologica, 34:235.PubMedCrossRefGoogle Scholar
- Webb, M. S., Wheeler, I. J., Bally, M. B., and Mayer, L. D., 1995, The cationic lipid stearylamine reduces the permeability of the cationic drugs verapamil and prochlorperazine to lipid bilayers: implications for drug delivery, Biochim. Biophys. Acta, 1238:147.PubMedCrossRefGoogle Scholar
- Williams, S.S., Alosco, T. R., Mayhew, E., Lasic, D. D., Martin, F. J., and Bankert, R. B., 1993, Arrest of human lung tumor xenograft growth in severe combined immunodeficient mice using doxorubicin encapsulated in sterically stabilized liposomes, Cancer Res., 53:3964.PubMedGoogle Scholar
- Yuan, F., Leunig, M., Huang, S. K., Berk, D. A., Papahadjopoulos, D., and Jain, R. K., 1994, Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft, Cancer Res., 54:3352.PubMedGoogle Scholar