Pseudomonas pp 245-270 | Cite as

The Flagellum

  • Thomas C. Montie
Part of the Biotechnology Handbooks book series (BTHA, volume 10)

Abstract

The classic pseudomonads are characterized by polar flagella, ranging from a single polar flagellum, Pseudomonas aeruginosa, to several polar flagella in Pseudomonas putida, Pseudomonas fluorescens, and Pseudomonas syringae. The only exception is Burkholderia mallei, which is permanently immotile and interestingly requires a living host for survival. It is the causal agent of the disease, glanders, in horses. Several of the multipolar flagellar types have been removed from the Pseudomonas genus based on r-RNA probe comparisons (Holloway, 1996), most recently to the Burkholderia spp. Some of these groups are discussed separately for comparison. The bulk of this chapter, however, focuses on P. aeruginosa because most studies of flagella have centered on this organism, primarily because of its clinical importance, but also because of its own metabolic uniqueness and versatility.

Keywords

Cystic Fibrosis Pseudomonas Aeruginosa Polar Flagellum Flagellar Gene Flagellin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M., and Oesterhelt, D., 1984, Morphology function and insolation of halobacteria flagella, J. Mol. Biol. 176: 459–475.CrossRefPubMedGoogle Scholar
  2. Allison, J., Dawson, M., Drake, D., and Montie, T. C., 1985, Electrophoretic separation and molecular weight characterization of Pseudomonas aeruginosa H-antigen flagellins, Infect. Immun. 49: 770–774.PubMedGoogle Scholar
  3. Anderson, T. R., and Montie, T. C., 1989, Flagellar antibody stimulated opsono-phagocytosis of Pseudomonas aeruginosa associated with response to either a-or b-type flagellar antigen, Can. J. Microbiol. 35: 755–763.CrossRefGoogle Scholar
  4. Anderson, T. R., and Montie, T. C., 1987, Opsonophagocytosis of Pseudomonas aeruginosa treated with antiflagellar serum, Infect. Immun. 55: 3204–3206.PubMedGoogle Scholar
  5. Anderson, T. R., Montie, T. C., Murphy, M. D., and McCarthy, V. P., 1989, Pseudomonas aeruginosa flagellar antibodies in patients with cystic flbrosis, J. Clin. Microbio. 27: 2789–2793.Google Scholar
  6. Ansorg, T., 1978, Flagella specific H antigenic schema of Pseudomonas aeruginosa, Zentbl. Bakt. Mikrobiol. Hyg. 242: 228–238.Google Scholar
  7. Ansorg, R., and Schmitt, W., 1980, Immunologishe and elektrophoretische Charakterisierung der flagelline unterschied licher H-typen von Pseudomonas aeruginosa, Med Microbiol. Immunol. 163: 217–226.CrossRefGoogle Scholar
  8. Arora, S. K., Titchings, B. W., Almira, E. C., Lory, S., and Ramphai, R., 1996, Cloning and characterization of Pseudomonas aeruginosa fliF, necessary for flagellar assembly and bacterial adherence to mucin, Infect. Immun. 64: 2130–2136.PubMedGoogle Scholar
  9. Atkinson, M., Allen, C., and Sequeira, L., 1992, Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum, J. Bacteriol. 174: 4356–4360.PubMedGoogle Scholar
  10. Brett, P. J., Mah, D. C. W., and Woods, D. E., 1994, Isolation and characterization of Pseudomonas pseudomallei flagellin proteins, Infect. Immun. 62(5): 1914–1919.PubMedGoogle Scholar
  11. Brickman, C. S., Kelly-Wintenberg, K., and Montie, T. C., 1997, Comparative analysis of flagellin genes of wild-type fla+ and non-motile fla— P. aeruginosa strains, In: Abstracts of the 97th General Meeting of the American Society for Microbiology, 1997, American Society for Microbiology, Washington D.C., #D-42, p. 215.Google Scholar
  12. Brimer, C. D., Kelly-Wintenberg, K., and Montie, T. C., 1997, Cloning and characterization of Pseudomonas aeruginosa. a-type flagellin genes, In: Abstracts of the 97th General Meeting of the American Society for Microbiology, 1997, American Society for Microbiology, Washington, D.C., #D-43, p. 215.Google Scholar
  13. Cha, H., R. Nichols, and Montie, T. C., 1996, Posttranslational phosphorylation of Pseudomonas aeruginosa by an envelope kinase in vitro, In: Abstracts of the 96th General Meeting of the American Society for Microbiology, 1996. American Society for Microbiology, Washington, D.C., D-73, p. 254.Google Scholar
  14. Craven, R. C., and Montie, T. C., 1985, Effect of nitrogen source on the chemotaxis of Pseudomonas aeruginosa toward amino acids, J. Bact. 164: 544–549.PubMedGoogle Scholar
  15. Craven, R. C., and Montie, T. C., 1981, Motility and chemotaxis of three strains of Pseudomonas aeruginosa used for virulence studies, Can. J. Microbiol. 25: 458–460.CrossRefGoogle Scholar
  16. Craven, R. C., and Montie, T. C., 1985, Effect of nitrogen source on the chemotaxis of Pseudomonas aeruginosa toward amino acids. J. Bacteriol. 164: 544–549.PubMedGoogle Scholar
  17. Doig, P., Kinsella, N., Guerry, P., and Trust, T. J., 1996, Characterization of post-transnational modification of Campylobacter flagellin: Identification of a sero-specific gly-cosylation moiety. Mol. Microbiol. 19(2): 379–387.CrossRefPubMedGoogle Scholar
  18. Drake, D., and Montie, T. C., 1988, Flagella, motility, and invasive virulence of Pseudomonas aeruginosa, J. Gen. Microbiol. 134: 43–52.PubMedGoogle Scholar
  19. Drake, D., and Montie, T. C., 1987, Protection against Pseudomonas aeruginosa infection by passive transfer of anti-flagellar serum, Can. J. Microbiol. 33: 755–763.CrossRefPubMedGoogle Scholar
  20. Garnak, M., and Reeves, H. C., 1978, Phosphorylation of isocitrate dehydrogenase of Escherichia coli, Science. 203: 1111–1112.CrossRefGoogle Scholar
  21. Gussin, G. N., Ronson, C. W., and Ausubel, F. M., 1986, Regulation of nitrogen fixation genes, Annu. Rev. Genet. 20: 567–591.CrossRefPubMedGoogle Scholar
  22. Holder, I. A., and Neely, A. N., 1989, Combined host and specific anti-Pseudomonas-directed therapy for Pseudomonas aeruginosa infections in burned mice: Experimental results and theoretic considerations, J. Burn Care Rehabil. 10: 131–137.CrossRefPubMedGoogle Scholar
  23. Holder, I. A., Wheeler, R., and Montie, T. C., 1982, Flagellar preparations from Pseudomonas aeruginosa animal protection studies, Infect. Immun. 35: 276–280.PubMedGoogle Scholar
  24. Holloway, B. W., 1996, Pseudomonas genetics and taxonomy, in: Molecular Biology of Pseudomonas., (T. Nakazawa, K. Furakawa, D. Haas, and S. Silver, eds.), ASM Press, Washington, D.C., pp. 22–32.Google Scholar
  25. Ishimoto, K. S., and Lory, S., 1989, Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase, Proc. Natl. Acad. Sci. USA. 86: 1954–1957.CrossRefPubMedGoogle Scholar
  26. Jarrell, K. F., Bayley, D. P., and Kostyukova, A. S., 1996, The archeal flagellum: A unique motility structure, J. Bacteriol. 178(17): 5057–5064.PubMedGoogle Scholar
  27. Jin, S., Ishimoto, K., and Lory, S., 1994, Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames in Pseudomonas aeruginosa, J. Bacteriol. 176: 1313–1322.Google Scholar
  28. Kelly-Wintenberg, K., Anderson, T., and Montie, T. C., 1990, Phosphorylated tyrosine in the flagellum filament of Pseudomonas aeruginosa, J. Bacteriol. 172: 5135–5139.PubMedGoogle Scholar
  29. Kelly-Wintenberg, K., South, S., and Montie, T. C., 1993, Tyrosine phosphate in a-and b-type flagellins of Pseudomonas aeruginosa, J. Bacteriol. 175: 2458–2461.PubMedGoogle Scholar
  30. Kelly-Wintenberg, K., and Montie, T. C., 1994, Chemotaxis to oligopeptides by Pseudomonas aeruginosa, Appl. Environ. Microbiol. 60: 363–367.PubMedGoogle Scholar
  31. Kennedy, P. J., and Potts, M., 1996, Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation, J. Bacteriol. 178: 4759–4764.Google Scholar
  32. Kuboni, T., Shimamoto, N., Yanaguchi, S., Yanaguchi, K., and Aizawa, S., 1992, Morphological pathway of flagellar assembly in Salmonella typhimurium, J. Mol. Biol. 226: 433–446.CrossRefGoogle Scholar
  33. Landsperger, W. J., Kelly-Wintenberg, K., Montie, T. C., Knight, L. S., Hansen, M. B., Huntenburg, C. C., and Schneidkraut, M. J., 1994, Inhibition of bacterial motility with human anti-flagellar monoclonal antibodies attenuates Pseudomonas aeruginosa-in-duced pneumonia in the immunocompetent rat, Infect. Immun. 62: 4825–4830.PubMedGoogle Scholar
  34. Landsperger, W. J., South, S. L., Kelly-Wintenberg, K., Montie, T. C., and Huntenberg, C. C., 1993, Immunoreactivity of human IgGl monoclonal antibodies with flagella of Pseudomonas aeruginosa, Abstracts ASM, E55: 152.Google Scholar
  35. Lanyi, B., 1970, Serological properties of Pseudomonas aeruginosa. II. Type-specific thermo-labile (flagellar) antigens, Acta Microbiol. Acad. Sci. Hung. 17: 35–48.PubMedGoogle Scholar
  36. Lechner, J. F., and Wieland, F., 1989, Structure and biosynthesis of prokaryotic glycopro-teins, Ann. Rev. Biochem. 58: 173–194.CrossRefPubMedGoogle Scholar
  37. Lechner, J. F., Weiland, F., and Sumper, M., 1985, Transient methylation of dilichol oligosacharides as an obligatory step in halobacterial sulfated glycoprotein biosynthesis, J. Biol. Chem. 260: 8984–8989.PubMedGoogle Scholar
  38. Legace, J., Pelaquin, L., Kermani, P., and Montie, T. C., 1995, IgG subclass responses to Pseudomonas aeruginosa a-and b-type flagellins in patients with cystic fibrosis: A prospective study. J. Med. Microbiol. 43: 270–276.CrossRefGoogle Scholar
  39. Luzar, M. A., and Montie, T. C., 1985, A virulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa, Infect. Immun. 50: 572–576.PubMedGoogle Scholar
  40. Luzar, M. A., Thomassen, M. J., and Montie, T. C., 1985, Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: Relationship to patient clinical condition, Infect. Immun. 50: 577–582.PubMedGoogle Scholar
  41. Mahenthiralingam, E., Campbell, M. E., and Speert, D. P., 1994, Nonmotility and pha-gocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis, Infect. Immun. 62: 596–605.PubMedGoogle Scholar
  42. Malakooti, J., Ely, B., and Matsumura, P., 1994, Molecular characterization, nucleotide sequence, and expression of the fliO, fliP, fliQ, and fliR genes of Escherichia coli, J. Bacterial 176: 189–197.Google Scholar
  43. Matsumoto, A., Hong, S. K., Ishizuka, H., Horinouchi, S., and Beppu, T., 1994, Phospho-rylation of the AFSR protein involved in secondary metabolism in streptomyces species by a eucaryotic-type protein kinase. Gene 146: 47–56.CrossRefPubMedGoogle Scholar
  44. McCartney, B., Howell, L., Kennelly, P. J., and Potts, M., 1997, Protein tyrosine phospho-rylation in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacterial 179(7): 2314–2318.Google Scholar
  45. McManus, A. T., Moody, E. E., and Mason, A. D., 1980, Bacterial motility: A component in experimental Pseudomonas aeruginosa burn wound sepsis, Burns 6: 235–239.CrossRefGoogle Scholar
  46. Moens, S., Michiels, K., and Vanderleyden, J., 1995, Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium, Microbiology 141: 2651–2657.CrossRefGoogle Scholar
  47. Montie, T. C., and Anderson, T. C., 1988, Enzyme linked immunosorbent assay for detection of Pseudomonas aeruginosa H (flagellar) antigen, Eur.J. Clin. Microbiol. Infect. Dis. 7: 256–260.CrossRefPubMedGoogle Scholar
  48. Montie, T. C., Dorner, F., McDonel, J. C., and Mitterer, A., U.S. Patent 4,831,121, May 1989.Google Scholar
  49. Montie, T. C., Doyle-Huntzinger, D., Craven, R. C., and Holder, F. A., 1982, Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model, Infect. Immun. 38: 1296–1298.PubMedGoogle Scholar
  50. Montie, T. C., Drake, D., Sellin, H., Slater, O., and Edmonds, S., 1987, Motility, virulence, and protection with a flagella vaccine against Pseudomonas aeruginosa infection, In: Antibiotics and Chemotherapy (D. Doring, I. A. Holder, and K. Botzenhart, eds.), Karger, Basel, pp. 233–248.Google Scholar
  51. Montie, T. C., Philips, D., and Landsperger, W., 1997, Characterization of monoclonal antibodies to Pseudomonas aeruginosa type-A flagellar antigen, Behring Inst. Mitt. 98: 424–433.PubMedGoogle Scholar
  52. Montie, T. C., and Stover, G. B., 1983, Flagellar preparations from Pseudomonas species: Isolation and characterization by molecular weight, J. Clin. Microbiol 18: 452–456.PubMedGoogle Scholar
  53. Moulton, R. C., and Montie, T. C., 1979, Chemotaxis by Pseudomonas aeruginosa, J. Bacteriol. 137: 274–280.PubMedGoogle Scholar
  54. Ochi, H., Ohtsuka, H., Yokota, S., Uezumi, I., Terashima, M., Irie, K., and Noguchi, H., 1991, Inhibitory activity on bacterial motility and in vivo protective activity of human monoclonal antibodies against flagella of Pseudomonas aeruginosa, Infect Immun. 59(2): 550–554.PubMedGoogle Scholar
  55. Ohtake, H., Kato, J., Kuroda, A., Taguchi, K., and Sakai, Y., 1996, Chemotactic signal transduction network in Pseudomonas aeruginosa, in: Molecular Biology of Pseudomonads (T. Nadazawa, K. Furakawa, D. Haas, S. Silver, eds.), ASM Press, Washington, D.C., pp. 188–194.Google Scholar
  56. Oishi, K., Sonoda, F., Iwagaki, A., Penglertnapagorn, P., Watanabe, K., Nagatake, T., Siadiak, A., Pollack, M., and Matsomoto, K., 1993, Therapeutic effects of human antiflagella monoclonal antibody in a neutropenic murine model of Pseudomonas aeruginosa pneumonia, Antimicrob. Agents Chemother. 37: 164–170.CrossRefPubMedGoogle Scholar
  57. Poole, K., and Hancock, R. E. W., 1983, Secretion of alkaline phosphatase and phospholipase C is specific and does not involve an increase in outer membrane permeability. FEMS Microbiol. Lett. 16: 25–29.CrossRefGoogle Scholar
  58. Ranakrishran, F., Zhao, J-L., and Newton, A., 1994, Multiple stimulational proteins are required for both transcriptional activation and flagellar genes, J. Bacteriol 176: 7587–7600.Google Scholar
  59. Ray, M. K., Kumar, G. S., and Shivaji, S., 1994, Tyrosine phosphorylation of a cytoplasmic protein from the Antarctic psychrotrophic bacterium Pseudomonas syringae, FEMS Microbiol. Lett. 122: 49–54.CrossRefGoogle Scholar
  60. Ritchings, B. W., Almira, E. C., Lory, S., and Ramphal, R., 1995, Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosar which regulate motility and adhesion to mucin, Infect. Immun. 63: 4868–4876.PubMedGoogle Scholar
  61. Rosok, M. J., Stebbins, M. R., Connelly, K., Lostrom, M. E., and Sidiak, A. W., 1990, Generation and characterization of murine antiflagellum monoclonal antibodies that are protective against lethal challenge with Pseudomonas aeruginosa, Infect. Immun. 58: 3819–3828.PubMedGoogle Scholar
  62. Rotering, H., and Dorner, F., 1989, Studies on a Pseudomonas aeruginosa flagella vaccine, in: Antibiotics and Chemotherapy, (N. Hoiby, S. S. Pederson, G. H. Shanel, G. Doring, and I. A. Holder, eds.), Karger, Basel, Vol. 42, pp. 218–228.Google Scholar
  63. Simpson, D. A., Ramphal, R., and Lory, S., 1995. Characterization of Pseudomonas aeruginosa fliO, a gene involved in flagellar biosynthesis and adherence, Infect. Immun. 63: 2950–2957.PubMedGoogle Scholar
  64. Smith, S. C., Kennelly, P. J., and Potts, M., 1997, Protein tyrosine phosphorylation in the archaea, J. Bacteriol. 179: 2418–2420.PubMedGoogle Scholar
  65. South, S., Nichols, R., and Montie, T. C., 1994, Tyrosine kinase activity in Pseudomonas aeruginosa, Mol. Microbiol. 12: 903–910.CrossRefPubMedGoogle Scholar
  66. Southam, G., Kalmokoff, M. L., Jarrell, K. F., Koval, S. F., and Beveridge, T. J., 1990, Isolation, characterization, and cellular insertion of the flagella from two strains of the archaeabacterium Methanospirillum hungatei, J. Bacteriol. 176(6): 3221–3228.Google Scholar
  67. Spangenberg, C., Heuer, T., Burger, C., and Tummler, B., 1996, Genetic diversity of flagellins of Pseudomonas aeruginosa, FEBS Lett. 396(2-3): 213–217.CrossRefPubMedGoogle Scholar
  68. Starnbach, M. N., and Lory, S., 1992, The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin syntheses, Mol. Microbiol. 6(4): 459–469.CrossRefPubMedGoogle Scholar
  69. Suzuki, T., and Iino, T., 1980, Isolation and characterization of multiflagellate mutants of Pseudomonas aeruginosa, J. Bacteriol. 143: 1471–1479.PubMedGoogle Scholar
  70. Thony, B., and Hennecke, H., 1989, The-24/-12 promoter comes of age, FEMS Microbiol. 5: 341–357.CrossRefGoogle Scholar
  71. Totten, P. A., Lara, J. C., and Lory, S., 1990, The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene, J. Bacteriol. 172: 389–396.PubMedGoogle Scholar
  72. Totten, P. A., and Lory, S., 1990, Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK, J. Bacteriol. 172: 7188–7199.PubMedGoogle Scholar
  73. Tsuda, N., and Iino, T., 1983a, Ordering of the flagellar genes in Pseudomonas aeruginosa by insertions of mercury transposon Tn501, J. Bacteriol. 153: 1008–1017.PubMedGoogle Scholar
  74. Tsuda, N., and Iino, T., 1983b, Transductional analysis of the flagellar genes in Pseudomonas aeruginosa, J. Bacteriol. 153: 1018–1926.PubMedGoogle Scholar
  75. Virjii, M., Saunders, J. R., Siims, G., Makepeace, K., Maskell, D., and Fergeson, D. J., 1993, Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: Modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin, Mol. Microbiol. 10: 1013–1028.CrossRefGoogle Scholar
  76. Wang, J. Y., and Koshland, D. E., Jr., 1978, Evidence for protein kinase activities in the prokaryote Salmonella typhimurium, J. Biol. Chem. 253: 7605–7608.PubMedGoogle Scholar
  77. Whiteside, T. M., and Rhodes-Roberts, M. E., 1985, Biochemical and serological properties of purified flagella and flagellins of some Pseudomonas spp, J. Gen. Microbiol. 131: 873–883.Google Scholar
  78. Winstanley, C., Coulson, M. A., Wepner, B., Morgan, J. A. W., and Hart, C. A., 1996, Flagellin gene and protein variation amongst clinical isolates of Pseudomonas aeruginosa, Microbiology 142: 2145–2151.CrossRefPubMedGoogle Scholar
  79. Winstanley, C., Morgan, J. A. W., Pickup, R. W., and Saunders, J. R., 1994, Molecular cloning of two Pseudomonas flagellin genes and basal body structural genes, Microbiology 140: 2019–2031.CrossRefPubMedGoogle Scholar
  80. Xiao-Song, H. E., Rivkina, M., Stocker, B. A. D., and Robinson, W. S., 1994, Hypervariable region IV of Salmonella fliC encodes a dominant surface epitope and a stabilizing factor for functional flagella, J. Bacteriol. 176: 2406–2414.Google Scholar
  81. Zhang, C-C., 1996, Bacterial signaling involving eukaryotic-type kinases, Mol. Microbiol. 20(1): 9–15.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Thomas C. Montie
    • 1
  1. 1.Department of MicrobiologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations