Pseudomonas pp 169-199 | Cite as

Transport Systems in Pseudomonas

  • Toshimitsu Hoshino
Part of the Biotechnology Handbooks book series (BTHA, volume 10)

Abstract

Nutrient acquisition and waste excretion are important functions of all living cells including bacteria. Cellular membranes composed of lipid bilayers are inherently impermeable to most nutrients and wastes because of their hydrophilicity. Therefore, living organisms have developed a variety of transport systems that accumulate or excrete a particular solute across the cytoplasmic membrane. These transport systems either equilibrate solutes across the membrane (facilitated diffusion) or use energy to concentrate solutes (active transport). In bacteria, most solutes are translocated across the cytoplasmic membrane by active transport systems, which allow accumulation of solute in chemically unmodified form against a concentration gradient. Such transport systems can be classified into two classes according to the mode of energy coupling (Harold, 1972; Konings et al., 1989): primary transport systems that are directly coupled to biochemical reaction to translocate solutes across the cytoplasmic membrane; and secondary transport systems that utilize electrochemical energy of some compound (mostly electrochemical potential of protons or Na+ ions) generated by metabolic reaction. Another important mechanisms for accumulation of solute employed by bacteria is group translocation, which couples the translocation of a solute across the membrane to the chemical modification of the solute.

Keywords

Transport System Pseudomonas Aeruginosa Membrane Vesicle Nitrate Transport Amino Acid Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. D., Wagner, L. M., Graddis, T. J., Landick, R., Antonucci, T. K., Gibson, A. L., and Oxender, D. L., 1990, Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli, J. Biol. Chem. 265: 11436–11443.PubMedGoogle Scholar
  2. Allenza, P., Lee, Y. N., and Lessie, T. G., 1982, Enzymes related to fructose utilization in Pseudomonas cepacia, J. Bacteriol. 150: 1348–1356.PubMedGoogle Scholar
  3. Ames, G. F.-L., 1986, Bacterial periplasmic transport systems: Structure, mechanism, and function, Ann. Rev. Biochem. 55: 397–425.PubMedGoogle Scholar
  4. Armitage, J. P., and Evans, M. C. W., 1983, The motile and tactic behaviour of Pseudomonas aeruginosa in anaerobic environments, FEBS Lett. 156: 113–118.PubMedGoogle Scholar
  5. Baumann, P., and Baumann, L., 1975, Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffi, Arch. Microbiol. 105: 225–240.PubMedGoogle Scholar
  6. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.PubMedGoogle Scholar
  7. Betlach, M. R., Tieje, J. M., and Firestone, R. B., 1981, Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13, Arch. Microbiol. 129: 135–140.PubMedGoogle Scholar
  8. Bishop, L., Agbayani, R., Jr., Ambudkar, S. V., Maloney, P. C., and Ames, G. F.-L., 1989, Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport, Proc. Natl. Acad. Sci. USA 86: 6953–6957.PubMedGoogle Scholar
  9. Botfield, M. C., Naguchi, K., Tsuchiya, T., and Wilson, T. H., 1992, Membrane topology of the melibiose carrier of Eschericia coli, J. Biol. Chem. 267: 1818–1822.PubMedGoogle Scholar
  10. Büchel, D. E., Gronenborn, B., and Muller-Hill, B., 1980, Sequence of the lactose permease gene, Nature 283: 541–545.PubMedGoogle Scholar
  11. Cervantes, C., and Silver, S., 1990, Inorganic cation and anion transport systems of Pseudomonas, in: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan, eds.), American Society of Microbiology, Washington, D.C., pp. 359–372.Google Scholar
  12. Cuskey, S. M., and Phibbs, P. V., Jr., 1985, Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO, J. Bacteriol. 162: 872–880.PubMedGoogle Scholar
  13. Davidson, A. L., and Nikaido, H., 1990, Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli, J. Biol. Chem. 265: 4245–4260.Google Scholar
  14. Deshusses, J. P., 1985, Myo-inositol transport in bacteria: H+ symport and periplasmic binding protein dependence, Ann. N. Y. Acad. Sci. 456: 351–360.PubMedGoogle Scholar
  15. Deshusses, J., and Belet, M., 1984, Purification and properties of the myo-inositol-binding protein from a Pseudomonas sp., J. Bacteriol. 159: 179–183.PubMedGoogle Scholar
  16. Dias, F. M., Ventullo, R. M., and Rowe, J. J., 1990, Regulation and energization of nitrate transport in a halophilic Pseudomonas stützen, Biochem. Biophys. Res. Commun. 166: 424–430.PubMedGoogle Scholar
  17. Doige, C. A., and Ames, G. F.-L., 1993, ATP-dependent transport systems in bacteria and humans: Relevance to cystic fibrosis and multidrug resistance, Ann. Rev. Microbiol. 47: 291–319.Google Scholar
  18. Dreyfuss, J., 1964, Characterization of a sulfate-and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239: 2292–2297.PubMedGoogle Scholar
  19. Durham, D. A., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149: 534–541.PubMedGoogle Scholar
  20. Eagon, R. G., and Phibbs, P. V., Jr., 1971, Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa, Can. J. Biochem. 49: 1031–1041.PubMedGoogle Scholar
  21. Eisenberg, R. C, and Phibbs, P. V., Jr., 1982, Characterization of an inducible mannitolbinding protein from Pseudomonas aeruginosa, Curr. Microbiol. 7:229–234.Google Scholar
  22. Fan, C. L., Miller, D. L., and Rodwell, V. W., 1972, Metabolism of basic amino acids in Pseudomonas putida: Transport of lysine, ornithine, and arginine, J. Biol. Chem. 247: 2283–2288.PubMedGoogle Scholar
  23. Feiss, D., Belet, M., and Deshusses, J., 1984, Precursor of the myo-inositol-binding protein of a Pseudomonas species, FEBS Lett. 170: 165–168.Google Scholar
  24. G.-Feiss, D., Frey, J., Belet, M., and Deshusses, J., 1985, Cloning of genes involved in myo-inositol transport in a Pseudomonas sp., J. Bacteriol. 162: 324–327.Google Scholar
  25. Francis, M. M., and Watanabe, M., 1981, Membrane-associated steroid-binding proteins of Pseudomonas testosteroni, Can. J. Microbiol. 27: 1290–1297.PubMedGoogle Scholar
  26. Francis, M. M., and Watanabe, M., 1982, Partial purification and characterization of a membrane-associated steroid-binding protein from Pseudomonas testosteroni, Can. J. Biochem. 60: 798–803.PubMedGoogle Scholar
  27. Francis, M. M., and Watanabe, M., 1983, Purification and characterization of a membraneassociated testosterone-binding protein from Pseudomonas testosteroni, Can. J. Biochem. Cell Biol. 61: 307–312.PubMedGoogle Scholar
  28. Francis, M. M., Kowalsky, N., and Watanabe, M., 1985, Extraction of a steroid transport system from Pseudomonas testosteroni membranes and incorporation into synthetic liposomes, J. Steroid Biochem. 23: 523–528.PubMedGoogle Scholar
  29. Guerinot, M. L., 1994, Microbial iron transport, Ann. Rev. Microbiol. 48: 743–772.Google Scholar
  30. Guymon, L. F., and Eagon, R. G., 1974, Transport of glucose, gluconate, and methyl α-D-glucoside by Pseudomonas aeruginosa, J. Bacteriol. 117:1261–1269.PubMedGoogle Scholar
  31. Hancock, R. E. W, Poole, K., and Benz, R., 1982, Outer membrane protein P of Pseudomonas aeruginosa: Regulation by phosphate deficiency and formation of small anionspecific channels in lipid bilayer membranes, J. Bacteriol. 150: 730–738.PubMedGoogle Scholar
  32. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36: 172–230.PubMedGoogle Scholar
  33. Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L., and Parales, R. E., 1994, Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodégradation, and transport of 4-hydroxybenzoate, J. Bacteriol. 176: 6479–6488.PubMedGoogle Scholar
  34. Hernandez, D., and Rowe, J. J., 1988, Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration, J. Biol. Chem. 263: 7937–7939.PubMedGoogle Scholar
  35. Hernandez, D., Dias, F. M., and Rowe, J. J., 1991, Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa, Arch. Biochem. Biophys. 286: 159–163.PubMedGoogle Scholar
  36. Higgins, S. J., and Mandelstam, J., 1972, Evidence for induced synthesis of an active transport factor for mandelate in Pseudomonas putida, Biochem. J. 126: 917–922.PubMedGoogle Scholar
  37. Hong, J.-H., Hunt, A. G., Masters, P. S., and Lieberman, M. A., 1979, Requirement of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 1213–1217.PubMedGoogle Scholar
  38. Hoshino, T., 1979, Transport systems for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 139: 705–712.PubMedGoogle Scholar
  39. Hoshino, T., and Kagayama, M., 1979, Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa, J. Bacteriol. 137: 73–81.PubMedGoogle Scholar
  40. Hoshino, T., and Kagayama, M., 1980, Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 141: 1055–1063.PubMedGoogle Scholar
  41. Hoshino, T., and Kagayama, M., 1982, Mutational separation of transport systems for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 151: 620–628.PubMedGoogle Scholar
  42. Hoshino, T., and Kose, K., 1989, Cloning and nucleotide sequence of braC, the structural gene for the leucine-, isoleucine-, and valine-binding protein of Pseudomonas aeruginosa PAO, J. Bacteriol. 171: 6300–6306.PubMedGoogle Scholar
  43. Hoshino, T., and Kose, K., 1990a, Cloning, nucleotide sequences, and identification of the products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system, J. Bacteriol. 172: 5531–5539.PubMedGoogle Scholar
  44. Hoshino, T., and Kose, K., 1990b, Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes, J. Bacteriol. 172: 5540–5543.PubMedGoogle Scholar
  45. Hoshino, T., and Nishio, K., 1982, Isolation and characterization of a Pseudomonas aeruginosa PAO mutant defective in the structural gene for the LIVAT-binding protein, J. Bacteriol. 151: 729–736.PubMedGoogle Scholar
  46. Hoshino, T., Tsuda, M., Iino, T., Nishio, K., and Kagayama, M., 1983, Genetic mapping of bra genes affecting branched-chain amino acid transport in Pseudomonas aeruginosa, J. Bacteriol. 153: 1272–1281.PubMedGoogle Scholar
  47. Hoshino, T., Kose, K., and Uratani, Y., 1990, Cloning and nucleotide sequence of the gene braB coding for the sodium-coupled branched-chain amino acid carrier in Pseudomonas aeruginosa PAO, Mol. Gen. Genet. 220: 461–467.PubMedGoogle Scholar
  48. Hoshino, T., Kose-Terai, K., and Uratani, Y., 1991, Isolation of the braZ gene encoding the carrier for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO, J. Bacteriol. 173: 1855–1861.PubMedGoogle Scholar
  49. Hoshino, T., Kose-Terai, K., and Sato, K., 1992, Solubilization and reconstitution of the Pseudomonas aeruginosa high-affinity branched-chain amino acid transport system, J. Biol. Chem. 267: 21313–21318.PubMedGoogle Scholar
  50. Kaback, H. R., 1983, The lac carrier protein in Escherichia coli, J. Membr. Biol. 76: 95–112.PubMedGoogle Scholar
  51. Karimian, M., and Ornston, L. N., 1981, Participation of the β-ketoadipate transport system in chemotaxis, J. Gen. Microbiol. 124: 25–28.PubMedGoogle Scholar
  52. Kay, W. W., and Gronlund, A. F., 1969, Proline transport by Pseudomonas aeruginosa, Biochim. Biophys. Acta 193: 444–455.PubMedGoogle Scholar
  53. Kay, W. W., and Gronlund, A. F., 1971, Transport of aromatic amino acids by Pseudomonas aeruginosa, J. Bacteriol. 105: 1039–1046.PubMedGoogle Scholar
  54. Konings, W. N., Pooleman, B., and Driessen, A. J. M., 1989, Bioenergetics and solute transport in Lactococci, CRC Crit. Rev. Microbiol. 16: 419–476.Google Scholar
  55. Kowalchuk, G. A., Hartnett, G. B., Benson, A., Houghton, J. E., Ngai, K.-L., and Ornston, L. N., 1994, Contrasting patterns of evolutionary divergence within the Acinetobactor calcoaceticus pea operon, Gene 146: 23–30.PubMedGoogle Scholar
  56. Kristjansson, J. K., Walter, B., and Hollocher, T. C, 1978, Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria, Biochemistry 17: 5014–5019.PubMedGoogle Scholar
  57. Laakso, S., 1976, The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonads fluorescens UK1, J. Gen. Microbiol. 95: 391–394.Google Scholar
  58. Lacoste, A.-M., Cassaigne, A., and Neuzil, E., 1981, Transport of inorganic phosphate in Pseudomonas aeruginosa, Curr. Microbiol. 6: 115–120.Google Scholar
  59. Lefebvre, Y. A., Lefebvre, D. D., Schulz, R., Groman, E. V., and Watanabe, M., 1979, The effects of specific inhibitors and an antiserum of 3β-and 17β-hydroxysteroid dehydrogenase on steroid uptake in Pseudomonas testosteroni, J. Steroid Biochem. 10: 519–522.PubMedGoogle Scholar
  60. Lessie, T. G., and Phibbs, P. V., Jr., 1984, Alternative pathways of carbohydrate utilization in Pseudomonas, Ann. Rev. Microbiol. 38: 359–387.Google Scholar
  61. Luthi, E., Bauer, H., Gamper, M., Brunner, F., Villeval, D., Mercenier, A., and Haas, D., 1990, The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein, Gene 87: 37–43.PubMedGoogle Scholar
  62. Mantsala, P., Laakso, S., and Nurmikko, V., 1974, Observations on methionine transport in Pseudomonas fluorescens UK1, J. Gen. Microbiol. 84: 19–27.PubMedGoogle Scholar
  63. Marger, M. D., and Saier, M. H., Jr., 1993, A major superfamily of transmembrane facilitators that catabolize uniport, symport, and antiport, Trends Biochem. Sci. 18: 13–19.PubMedGoogle Scholar
  64. Matsubara, K., Ohnishi, K., and Kiritani, K., 1992, Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium, J. Biochem. 112: 93–101.PubMedGoogle Scholar
  65. Meagher, R. B., McCorkle, G. M., Ornston, M. K., and Ornston, L. N., 1972, Inducible uptake system for β-carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida, J. Bacteriol. 111: 465–473.PubMedGoogle Scholar
  66. Meile, L., Soldati, L., and Leisinger, T., 1982, Regulation of proline catabolism in Pseudomonas aeruginosa PAO, Arch. Microbiol. 132: 189–193.PubMedGoogle Scholar
  67. Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl α-glucoside in Pseudomonas aeruginosa, Biochem. J. 132: 141–154.PubMedGoogle Scholar
  68. Miller, D. L., and Rodwell, V. W., 1971, Metabolism of basic amino acids in Pseudomonas putida, J. Biol. Chem. 246: 1765–1771.PubMedGoogle Scholar
  69. Montie, T. C, and Montie, D. B., 1979, Methionine transport in Pseudomonas aeruginosa, Can. J. Microbiol. 25: 1103–1107.PubMedGoogle Scholar
  70. Mukkada, A. J., Long, G. L., and Romano, A. H., 1973, The uptake of 2-deoxy-D-glucose by Pseudomonas aeruginosa and its regulation, Biochem. J. 132: 155–162.PubMedGoogle Scholar
  71. Neu, H. C., Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.PubMedGoogle Scholar
  72. Ohnishi, K., Hasegawa, A., Matsubara, K., Date, T., Okada, T., and Kiritani, K., 1988, Cloning and nucleotide sequence of the brnQ gene, the structural gene for a membrane-associated component of the LIV-II transport system for branched-chain amino acids in Salmonella typhimurium, Jpn. J. Genet. 63: 343–357.PubMedGoogle Scholar
  73. Ohta, N., Galsworthy, P. R., and Pardee, A. B., 1971, Genetics of sulfate transport by Salmonella typhimurium, J. Bacteriol. 105: 1053–1062.Google Scholar
  74. Ohtake, H., Cervantes, C., and Silver, S., 1987, Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid, J. Bacteriol. 169: 3853–3856.PubMedGoogle Scholar
  75. Ondrako, J. M., and Ornston, L. N., 1980, Biological distribution and physiological role of the β-ketoadipate transport system, J. Gen. Microbiol. 120: 199–209.PubMedGoogle Scholar
  76. Ornston, L. N., and Parke, D., 1976, Properties of an inducible uptake system for β-ketoadipate in Pseudomonas putida, J. Bacteriol. 125: 475–488.PubMedGoogle Scholar
  77. Parke, D., and Ornston, L. N., 1976, Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida, J. Bacteriol. 126: 272–281.PubMedGoogle Scholar
  78. Peck, H. D., Jr., 1961, Enzymatic basis for assimilatory and dissimilatory sulfate reduction, J. Bacteriol. 82: 933–939.PubMedGoogle Scholar
  79. Phibbs, P. V., Jr., and Eagon, R. G., 1970, Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa, Arch. Biochem. Biophys. 138: 470–482.PubMedGoogle Scholar
  80. Phibbs, P. V., Jr., McCowen, S. M., Feary, T. W., and Blevins, W. T, 1978, Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies, J. Bacteriol. 133: 717–728.PubMedGoogle Scholar
  81. Plate, C. A., 1979, Requirement for membrane potential in active transport of glutamine by Escherichia coli, J. Bacteriol. 137: 221–225.PubMedGoogle Scholar
  82. Poole, K., and Hancock, R. E. W., 1983, Secretion of alkaline phosphatase and phospho-lipase C is specific and does not involve an increase in outer membrane permeability, FEMS Microbiol. Lett. 16: 25–29.Google Scholar
  83. Poole, K., and Hancock, R. E. W., 1984, Phosphate transport in Pseudomonas aeruginosa: Involvement of a periplasmic phosphate-binding protein, Eur. J. Biochem. 144: 607–612.PubMedGoogle Scholar
  84. Postma, P. W., Lengeler, J. W., and Jacobsen, G. R., 1993, Phosphoenolpyruvate:carbohydrate phosphotransferase systems in bacteria, Microbiol Rev. 57: 543–594.PubMedGoogle Scholar
  85. Reber, G., Belet, M., and Deshusses, J., 1977, Myo-inositol transport system in Pseudomonas putida, J. Bacteriol. 131:872–875.Google Scholar
  86. Richarme, G., 1985, Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli, J. Bacteriol. 162: 286–293.PubMedGoogle Scholar
  87. Roehl, R. A., and Phibbs, P. V., Jr., 1982, Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa, J. Bacteriol. 149: 897–905.PubMedGoogle Scholar
  88. Rosenberg, H., 1987, Phosphate transport in prokaryotes, in: Ion Transport in Prokaryotes (B. P. Rosen and S. Silver, eds.), Academic Press, San Diego, pp. 205–248.Google Scholar
  89. Rosenfeld, H., and Feigelson, P., 1969, Product inhibition in Pseudomonas acidovorans of a permease system which transports L-tryptophan, J. Bacteriol. 97: 705–714.PubMedGoogle Scholar
  90. Rottenberg, H., 1975, The measurement of transmembrane electrochemical proton gradients, J. Bioenerg. 7: 61–74.PubMedGoogle Scholar
  91. Sage, A., Temple, L., Christie, G. B., and Phibbs, P. V., Jr., 1993, Nucleotide sequence and expression of the glucose catabolism and transport genes in Pseudomonas aeruginosa, Program and Book of Abstracts for 4th International Symposium on Pseudomonas, August 1993, p. 105.Google Scholar
  92. Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., and Berman, R. H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas, Arch. Microbiol. 112:49–55.PubMedGoogle Scholar
  93. Schook, L. B., and Berk, R. S., 1978, Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources, J. Bacteriol. 133: 1377–1382.Google Scholar
  94. Sias, S. R., and Ingraham, J. L., 1979, Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate, Arch. Microbiol. 122: 263–270.PubMedGoogle Scholar
  95. Sirko, A., Hryniewicz, M., Hulanicka, D., Bock, A., 1990, Sulfate and thiosulfate transport in Escherichia coli K12: Nucleotide sequence and expression of the cysTWAM gene cluster, J. Bacteriol. 172: 3351–3357.PubMedGoogle Scholar
  96. Sly, L. M., Worobec, E. A., Perkins, R. E., and Phibbs, P. V., Jr., 1993, Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants, Can. J. Microbiol. 39: 1079–1083.PubMedGoogle Scholar
  97. Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aeruobic pseudomonads: A taxonomic study, J. Gen. Microbiol. 43: 149–171.Google Scholar
  98. Stinett, J. D., Guymon, L. F., and Eagon, R. G., 1973, A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa: Observations on gluconate transport, Biochem. Biophys. Res. Commun. 52: 284–290.Google Scholar
  99. Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1976, Isolation of dicarboxylic acid-and glucose-binding proteins from Pseudomonas aeruginosa, J. Bacteriol. 128: 573–579.PubMedGoogle Scholar
  100. Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1977, Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa, J. Bacteriol. 131: 672–681.PubMedGoogle Scholar
  101. Stouthamer, A. H., 1976, Biochemistry and genetics of nitrate reductase in bacteria, Adv. Microbiol. Physiol. 14: 315–375.Google Scholar
  102. Surin, B. P., Rosenberg, H., and Cox, G. B., 1985, Phosphate-specific transport system of Escherichia coli: Nucleotide sequence and gene-polypeptide relationships, J. Bacteriol. 161: 189–198.PubMedGoogle Scholar
  103. Talalay, P., 1965, Enzymatic mechanisms in steroid biochemistry, Ann. Rev. Biochem. 34: 347–380.PubMedGoogle Scholar
  104. Temple, L., Cuskey, S. M., Perkins, R. E., Bass, R. C, Morales, N. M., Christie, G. E., Olsen, R. H., and Phibbs, P. V., Jr., 1990, Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO, J. Bacteriol. 172: 6396–6402.PubMedGoogle Scholar
  105. Thayer, J. R., and Wheelis, M. L., 1976, Characterization of a benzoate permease mutant of Pseudomonas putida, Arch. Microbiol. 110:37–42.PubMedGoogle Scholar
  106. Thayer, J. R., and Wheelis, M. L., 1982, Active transport of benzoate in Pseudomonas putida, J. Gen. Microbiol. 128: 1749–1753.Google Scholar
  107. Uratani, Y., 1985, Solubilization and reconstitution of sodium-dependent transport system for branched-chain amino acids from Pseudomonas aeruginosa, J. Biol. Chem. 260: 10023–10026.PubMedGoogle Scholar
  108. Uratani, Y., 1992, Immunoaffinity purification and reconstitution of sodium-coupled branched-chain amino acid carrier of Pseudomonas aeruginosa, J. Biol. Chem. 267: 5177–5183.PubMedGoogle Scholar
  109. Uratani, Y, and Aiyama, A., 1986, Effect of phospholipid composition on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa, J. Biol. Chem. 261: 5450–5454.PubMedGoogle Scholar
  110. Uratani, Y, and Hoshino, T, 1989, Difference in sodium requirement of branched-chain amino acid carrier between Pseudomonas aeruginosa PAO and PML strains is due to substitution of an amino acid at position 292, J. Biol. Chem. 264: 18944–18950.PubMedGoogle Scholar
  111. Uratani, Y, Wakayama, N., and Hoshino, T, 1987, Effect of lipid acyl chain length on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa, J. Biol. Chem. 262: 16914–16919.PubMedGoogle Scholar
  112. Uratani, Y., Tsuchiya, T., Akamatsu, Y., and Hoshino, T., 1989, Na+(Li+)/branched-chain amino acid cotransport in Pseudomonas aeruginosa, J. Membr. Biol. 107: 57–62.PubMedGoogle Scholar
  113. Vander Wauben, C., Pierard, A., Kley-Raymann, M., and Haas, D., 1984, Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: Evidence for a four-gene cluster encoding the arginine deiminase pathway, J. Bacteriol. 160: 928–934.Google Scholar
  114. Verhoogt, H. J. C., Smit, H., Abee, T., Gamper, M., Driessen, A. J. M., Haas, D., and Konings, W. L., 1992, arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger, J. Bacteriol. 174: 1568–1573.PubMedGoogle Scholar
  115. Watanabe, M., and Po, L., 1974, Testosterone uptake by membrane vesicles of Pseudomonas testosteroni, Biochim. Biophys. Acta 345: 419–429.Google Scholar
  116. Watanabe, M., and Po, L., 1976, Membrane bound 3β-and 17β-hydroxysteroid dehydrogenase and its role in steroid transport in membrane vesicles of Pseudomonas testosteroni, J. Steroid Biochem. 7: 171–175.PubMedGoogle Scholar
  117. Watanabe, M., Phillips, K., and Watanabe, H., 1973, Induction of steroid-binding activity in Pseudomonas testosteroni, J. Steroid. Biochem. 4: 622–631.Google Scholar
  118. Watanabe, M., Sy, L. P., Hunt, D., and Lefebvre, Y., 1979, Binding of steroids by a partially purified periplasmic protein from Pseudomonas testosteroni, J. Steroid Biochem. 10: 207–213.PubMedGoogle Scholar
  119. Weill-Thevenet, N. J., Hermann, M., and Vandecasteele, J.-P., 1979, Lysine transport systems in Pseudomonas in relation to their physiological function, J. Gen. Microbiol. 111: 263–269.Google Scholar
  120. Whiting, P. H., Midgley, M., and Dawes, E. A., 1976, The regulation of transport of glucose, gluconate, and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa, Biochem. J. 154: 659–668.PubMedGoogle Scholar
  121. Wright, J. K., Seckler, R., and Overath, P., 1986, Molecular aspects of suganion cotransport, Ann. Rev. Biochem. 55: 225–248.PubMedGoogle Scholar
  122. Yamato, I., and Anraku, Y., 1977, Transport of sugars and amino acids in bacteria. XVIII. Properties of isoleucine carrier in the cytoplasmic membrane vesicles of Escherichia coli, J. Biochem. 81: 1517–1523.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Toshimitsu Hoshino
    • 1
  1. 1.Mitsubishi Kasei Institute of Life SciencesMachida-Shi, TokyoJapan

Personalised recommendations