Synthesis and Processing of Nano-Scale Materials through Chemistry

  • Helmut K. Schmidt

Abstract

The sol-gel process can be considered as a method for the preparation of non-metallic inorganic materials by a chemical route. This general definition, however, does not match completely the specifics of this process since the sol phase is considered to be indispensable. The preparation of precursors for inorganic materials, for example, ceramics by precipitation processes or chemical vapor reaction to synthesize powders has been known for long times and industrially used widely as, for example, the Bayer process for the production of alumina powders. In order to make this type of processes efficient, the precipitation takes place under thermodynamic conditions, under which no disturbance of nucleation and growth takes place in order to obtain well-defined precipitates easy to be filtered or processed. Another example is the hydrothermal process, for example, developed by Degussa, or the fabrication of zirconia, where the transport mechanisms for crystal growth under elevated pressure and temperature conditions and the formation of thermodynamically stable and well crystallized phases is easier than under low-pressure, low-temperature conditions. If nucleation and growth take place under conditions where the nuclei absorb surface charges, each nucleus grows independently and no aggregation takes place if the surface charges (related to the so-called Zeta-potential) are in the range where the resulting repulsing forces are strong enough to avoid agglomeration. Moreover, if the concentration is off the feet and the resulting concentration of particles in the liquid system is low enough to keep the distances in a range where the Stern’s potential2 does not switch into attraction, colloidal solution can be kept stable.

Keywords

Control Growth Surface Modifier Methacrylic Acid Ethyl Acetoacetate Material Research Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Kriechbaum, P. Kleinschmitt and D. Peukert, in Ceramic Transactions 1A, Ceramic Powder Science. Ed.: Am. Ceram. Society, Westerville/Ohio, USA, 146 (1988).Google Scholar
  2. 2.
    O. Stern, Z Elektrochem., 508 (1924).Google Scholar
  3. 3.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990).Google Scholar
  4. 4.
    C.J. Brinker, A.J. Hurd, G.C. Frye, K.J. Ward, C. S. Ashley, Sol-gel thin film formation, J. Non-Cryst. Solids 121:294(1990).CrossRefGoogle Scholar
  5. 5.
    J. Zarzycki, Synthesis of glasses from precursor: bulk and film — a comparison, Proc. of the European Meeting Inorganic Coatings on Glass, P. Picozzi, S. Santucci, P. Boattini, L. Massarelli and V. Scopa (eds.), Soietà Italiana Vetro, L’Aquila, Italy, 149 (1988).Google Scholar
  6. 6.
    Better Ceramics Through Chemistry V, Mat. Res. Soc. Symp. Proc. Vol. 271, M. J. Hampden-Smith, W. G. Klemperer and C. J. Brinker (eds.), Materials Research Society, Pittsburgh/PA (1992).Google Scholar
  7. 7.
    Better Ceramics Through Chemistry VI, Mat. Res. Soc. Symp. Proc. Vol. 346, A. K. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez (eds.), Materials Research Society, Pittsburgh/PA (1994).Google Scholar
  8. 8.
    Better Ceramics Through Chemistry VII, Mat. Res. Soc. Symp. Proc. Vol. 435, B. K. Coltrain, C. Sanchez, D. W. Schaefer and G. L. Wilkes (eds.), Materials Research Society, Pittsburgh/PA (1996).Google Scholar
  9. 9.
    SPIE Sol-Gel Optics I, J. D. Mackenzie and D. R. Ulrich (eds.), Vol. 1328, SPIE, Bellingham/WA, USA (1990).Google Scholar
  10. 10.
    SPIE Sol-Gel Optics II, J. D. Mackenzie (ed.), Vol. 1758, SPIE, Bellingham/WA, USA, 1992.Google Scholar
  11. 11.
    SPIE Sol-Gel Optics III, J. D. Mackenzie (ed.), Vol. 2288, SPIE, Bellingham/WA, USA, 1994.Google Scholar
  12. 12.
    L. Esquivias, eds., 6th International workshop on glasses and ceramics from gels, 1991, Seville, Spain, in J. Non-Cryst. Solids 147/148 (1992).Google Scholar
  13. 13.
    J. Livage, ed., 7th International workshop on glasses and ceramics from gels, 1993, Paris, France, in J. Sol-Gel Science and Technology 2:1/3 (1994).Google Scholar
  14. 14.
    R.M. Almeida, ed., 8th International workshop on glasses and ceramics from gels, 1995, in J. Sol-Gel Science and Technology 8:1/2/3 (1997).Google Scholar
  15. 15.
    S. Hirano, In-situ control of microstructures of ceramic composites, Funtai Oyobi Funmatsu Yakin 39(12):1093–9 (1992).Google Scholar
  16. 16.
    C. Sanchez, Molecular design of hybrid organic-inorganic nano-composites made via sol-gel chemistry, oral presentation in: Organic/Inorganic Polymer Systems, Division of Polymer Chemistry, Inc., American Chemical Society, Napa Valley (1995).Google Scholar
  17. 17.
    H. Schmidt, Organically modified silicates and ceramics s two-phasic systems: synthesis and processing, J. Sol-Gel Science and Technology 8 No. 1/2/3:557 (1997).Google Scholar
  18. 18.
    H. Schmidt, “Relevance of sol-gel methods for synthesis of fine particles”, KONA Powder and Particle, No. 14, 92-103(1996).Google Scholar
  19. 19.
    R. Naß and H. Schmidt, Formation and properties of chelated alumiumalkoxides, in: Ceramic Powder Processing Sciencs, H. Hausner, G. L. Messing and S. Hirano, eds., Deutsche Keramische Gesellschaft e.V., Köln, 69–76 (1989).Google Scholar
  20. 20.
    M. Popall, H. Meyer, H. Schmidt and J. Schulz: Inorganic-organic composites (ORMOCERs) as structured layers for microelectronics, Mat. Res. Soc. Symp. Proc. 180:995 (1990).CrossRefGoogle Scholar
  21. 21.
    H. Schmidt, Application of Ormocers, in: Ceramic Transactions Vol. 55: Sol-Gel Science and Technology, E. Pope, S. Sakka and L. Klein, eds., American Ceramic Society, Westerville/Ohio (1995).Google Scholar
  22. 22.
    H. Schmidt, R. Kasemann, T. Burkhart, G. Wagner, E. Arpac and E. Geiter, Inorganic-organic hybrid coatings for metal and glass surfaces, in: ACS Symposium Series No. 585: Hybrid Organic-Inorganic Composites, J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, eds., American Chemical Society, Washington (1995).Google Scholar
  23. 23.
    C. Becker, M. Zahnhausen, H. Krug and H. Schmidt, Characterization of the photopolymerization — kinetics of inorganic-organic nanocomposite materials by photo-DSC, in Ceramics Transactions Vol. 55: Sol-Gel Science and Technology, E. Pope, S. Sakka and L. Klein, eds., American Ceramic Society, Westerville/Ohio (1995).Google Scholar
  24. 24.
    R. Kasemann and H. Schmidt, “Coatings for mechanical and chemical protection based on organicinorganic sol-gel nanocomposites”, New Journal of Chemistry, Vol. 18, N°. 10, 1117–1123, 1994.Google Scholar
  25. 25.
    F. Tiefensee, Ph. D. Thesis, University of Saarland, Saarbrücken (1994).Google Scholar
  26. 26.
    H. Schmidt, Entwicklung, Mikrostrukturierung und Anwendung von Keramik-polymer-Nanokompositen, in Proc. Werkstoffwoche 1996, Symp. 9, DGM-Informationsgesellschaft mbH (in print).Google Scholar
  27. 27.
    F. Tiefensee, P. W. Oliveira and H. Schmidt, Organic-inorganic composite materials: optical properties of laser-atterned and protective-coated waveguides, in SPIE Proc. Sol-Gel Optics 1758:448 (1992).CrossRefGoogle Scholar
  28. 28.
    R. Naß, D. Burgard, private communication.Google Scholar
  29. 29.
    D. Burgard, R. Naß and H. Schmidt, German Offen No. DE 195 15 820 A 1, 04-29-95.Google Scholar
  30. 30.
    H. Schmidt, R. Naß and D. Burgard, Verfahren zur Herstellung nanoskaliger Oxidteilchen, European Patent No. EP 0 587 672 Bl, 02-14-96.Google Scholar
  31. 31.
    D. Burgard, Master’s Thesis, University of Saarland, Saarbrücken, Germany (1992).Google Scholar
  32. 32.
    D. Burgard, C. Kropf, R. Naß and H. Schmidt, Routes to deagglomerated nanopowder by chemical synthesis, in Better Ceramics Through Chemistry VI, Mat. Res. Soc. Symp. Proc. Vol. 346, A. K. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez (eds.), Materials Research Society, Pittsburgh/PA 346:101 (1994).Google Scholar
  33. 33.
    D. Burgard, R. Naß and H. Schmidt, Synthesis and colloidal processing of nanocrystalline (Y2O3 stabilized) ZrO2 powders by a surface free energy controlled process, in Mat. Res. Soc, Symp. Proc, Pittsburgh/PA, 432:113 (1997).CrossRefGoogle Scholar
  34. 34.
    D. Burgard, R. Drumm, R. Naß and H. Schmidt, Herstellung und Verarbeitung von nanoskaligem (stabilisiertem) ZrO2 über einen kolloid-chemischen Prozeß, in Proc Werkstoffwoche 1996, Symp. 6, G. Ziegler, H. Cherdron, W. Hermel, J. Hirsch and H. Kolaska (eds.), DGM-Informationsgesellschaft mbH, Frankfurt/M. (1997).Google Scholar
  35. 35.
    R. Kasemann, H. Schmidt, E. Arpac and V. Gerhard, German Offen No. DE 43 38 361 A 1, 11-10-93.Google Scholar
  36. 36.
    G. A. Patel, C. Park, S. J. Kubisen, United States Patent No. 5,411,807, 05-02-95.Google Scholar
  37. 37.
    G. Jonschker, Master’s Thesis, University of Saarland, Saarbrücken (1992).Google Scholar
  38. 38.
    M. Mennig, G. Jonschker and H. Schmidt, Sol-gel derived thick SiO2 coatings and their thermomechanical and optical properties, in SPIE Proc Sol-Gel Optics 1758:125 (1992).CrossRefGoogle Scholar
  39. 39.
    M. Mennig, G. Jonschker and H. Schmidt, Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen, European Patent No. EP 0 642 475 Bl, 06-19-96.Google Scholar
  40. 40.
    M. Mennig, G. Jonschker, H. Schmidt and P. Kahanek, Flame retardent coatings on glass, Glas-Ingenieur 3:54 (1994).Google Scholar
  41. 41.
    G. Jonschker, Ph. D. Thesis, University of Saarland, Saarbrücken (in print).Google Scholar
  42. 42.
    INM brochure “Edelstahl in neuem Gewand”, Saarbrücken (1997).Google Scholar
  43. 43.
    G. Jonschker, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Helmut K. Schmidt
    • 1
  1. 1.Institut für Neue Materialien gem. GmbHSaarbrückenGermany

Personalised recommendations