Polymers and Organic-Inorganic Hybrids for Second-Order Nonlinear Optics
Abstract
Poled nonlinear optical (NLO) polymers have been the great interest for photonics applications.1,2 Using such materials, electro-optic modulators with a 100 GHz bandwidth have already been realized at the laboratory level,3 and a number of passive and active photonic devices also sucessfully fabricated.4–6 From the beginning stage of the NLO polymeric materials research in the middle of 1980’s, thermal relaxation and low values of NLO coefficients of chromophores in these systems were the major obstacles for practical applications. Since then there have been continuous efforts toward reducing thermal relaxation and increasing NLO activity of the materials. In recent years, in addition to improving these two fundamental factors, research was also extended to enhance optical quality, processibility and chemical stability of NLO materials, which are the properties closely related to those of matrix polymers.7,8
Keywords
Composite Film Second Harmonic Generation Second Harmonic Generation Signal Good Optical Quality Mitsunobu ReactionPreview
Unable to display preview. Download preview PDF.
References
- (1).S. R. Marder, J. E. Sohn, and G. D. Stucky, “Materials for Nonlinear Optics. Chemical Perspectives”, American Chemical Society, Washington, 1991.CrossRefGoogle Scholar
- (2).P. N. Prasad and D. J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, John Wiley, New York, 1991.Google Scholar
- (3).L. R. Dalton, Abstracts of 3rd Intermational Conference on Organic Nonlinear Optics, Morco Island, Florida, Dec. 16–20, 1996, p 25.Google Scholar
- (4).J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, and J. T. Kenny, R. Lytel, Appl. Phys. Lett. 1991. 59. 2213.Google Scholar
- (5).D. Yu, A. Gharavi, and K. Yu, Appl. Phys. Lett. 1995, 66, 1050.CrossRefGoogle Scholar
- (6).M. Chen, L. R. Dalton, L. Yu, Y. Q. Shi, and W. H. Steier, Macromolecules 1992, 25, 4032.CrossRefGoogle Scholar
- (7).K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for Photonics Applications”, in Comprehensive Polymer Science, 1st Suppl. Vol., S. L. Aggarwal and S. Russo Eds, Pergamon Press, Oxford, 1992.Google Scholar
- (8).D. M. Burland, R. D. Miller, and C. A. Walsh, Chem. Rev. 94, 31 (1994).CrossRefGoogle Scholar
- (9).W. M. Laidlaw, R.G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).CrossRefGoogle Scholar
- (10).G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, and C. R. Baown, Nature 357, 363 (1992).CrossRefGoogle Scholar
- (11).Y. W. Kim, K.-S. Lee, and K.-Y. Choi, Syn. Met. 57, 3998 (1993).CrossRefGoogle Scholar
- (12).K.-J. Moon, H.-K. Shim, and K.-S. Lee, Mol. Cryst. & Liq. Cryst., 247, 91 (1994).CrossRefGoogle Scholar
- (13).K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, Macromolecules, 29, 861 (1996).CrossRefGoogle Scholar
- (14).H. Y. Woo, K.-S. Lee, and H.-K. Shim, Macromol. Chem. Phys., submitted 1997.Google Scholar
- (15).S. B. Lee, K. B. Lee, and K.-S. Lee,’ 96 Fall Meeting of the Polymer Society of Korea, Abstracts, 1996, 704.Google Scholar
- (16).C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, Macromolecules, 28, 3713 (1995).CrossRefGoogle Scholar
- (17).K.-S. Lee, K.-J. Moon, and K.-S. Lee, Korea Polym. J., 4, 191 (1996).Google Scholar
- (18).K.-S. Lee, S.-W. Choi, H. Y. Woo, K.-J. Moon, H.-K. Shim, M. Jeong, and T.-K. Lim, J. Opt. Soc. Am. B, submitted 1997.Google Scholar
- (19).T. Takekoshi, J. E. Kochanowski, J. S. Manello, and M. J. Webber, J. Polym. Sci. Polym. Symp., 74, 93 (1986).CrossRefGoogle Scholar
- (20).K.-S. Lee, K.-Y. Choi, J. C. Won, B. K. Park, and I.-T. Lee, US Patent 5,212,277, May 18, 1993.Google Scholar
- (21).A. K. Jen, V. P. Rao, K. Y. Wong, and K. J. Drost, J. Chem. Soc, Chem. Commun. 1993, 90.Google Scholar
- (22).O. Mitsunobu, Synthesis, 1981, 1.Google Scholar
- (23).J. Zieba, Y. Zhang, M. Cassteans, R. Burzynski, and P. N. Prasad, Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1758.Google Scholar
- (24).K.-S. Lee, K.-J. Moon, H. Y. Woo, and H.-K. Shim, Adv. Mater., in press 1997.Google Scholar
- (25).M. Chen, L. Yu, L. R. Dalton, Y. Shi, and W. H. Steier, Macromolecules, 24, 5421 (1991).CrossRefGoogle Scholar
- (26).Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Polymer (Korea), 19, 569 (1995).Google Scholar
- (27).Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Nonlinear Opt., 15, 175 (1996).Google Scholar
- (28).K.-S. Lee, Y. H. Min, S. H. Na, J. H. Lee, K.-S. Kim, and C. S. Yoon, Polym. Mater. Sci. & Eng., 75, 261 (1996).Google Scholar
- (29).K.-S. Lee, Y. H. Min, C. S. Yoon, and L. M. Do, Mol Elect. & Dev., 7, 267 (1996).Google Scholar
- (30).I. H. Suh, S. S. Lim, J.H. Lee, M. J. Kim, C. S. Yoon, H. K. Hong, and K.-S. Lee, Acta Cryst., C50, 1768(1994).Google Scholar
- (31).Y. H. Min, C. S. Yoon, K.-S. Lee, and K. S. Kim, Appl Physics (Korea), 9, 176 (1996).Google Scholar
- (32).C. C. Teng and H. T. Man, Appl. Phys. Lett., 56, 30 (1990).CrossRefGoogle Scholar