Chirality Effects in Second-Order Nonlinear Optics

  • Martti Kauranen
  • Thierry Verbiest
  • Sven Van Elshocht
  • André Persoons

Abstract

Second-order nonlinear optical processes are forbidden, in the electric-dipole approximation, in centrosymmetric materials.1 For organic materials, noncentrosymmetry and significant second-order response (first molecular hyperpolarizability) is relatively easy to achieve on the molecular level by connecting donor and acceptor groups by a conjugated π-electron system.2 However, the macroscopic noncentrosymmetry of such materials is usually achieved only by aligning the molecules in an electric field. In polymeric materials, the alignment can be frozen by cooling the material below its glass-transition temperature while the field is applied. Unfortunately, this poling process results in a thermodynamically unstable material whose nonlinearity tends to relax with time.3

Keywords

Magnetic Contribution Chiral Molecule Chiral Medium Chiral Material Chiral Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).Google Scholar
  2. 2.
    See for example, P. N. Prasad and D. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).Google Scholar
  3. 3.
    T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, Science 268, 1604 (1995).CrossRefGoogle Scholar
  4. 4.
    J. F. Nicoud and R. J. Twieg, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. S. Chemla and J. Zyss (Academic, Orlando, 1987).Google Scholar
  5. 5.
    G. Wagnière, Linear and Nonlinear Optical Properties of Molecules (VCH, Weinheim, 1993).Google Scholar
  6. 6.
    J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).CrossRefGoogle Scholar
  7. 7.
    P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, Phys. Rev. Lett. 16, 792 (1966).CrossRefGoogle Scholar
  8. 8.
    A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, Phys. Rev. Lett. 70, 1085 (1993).CrossRefGoogle Scholar
  9. 9.
    P. S. Pershan, Phys. Rev. 130, 919 (1963).CrossRefGoogle Scholar
  10. 10.
    E. Adler, Phys. Rev. 134, A728 (1964).CrossRefGoogle Scholar
  11. 11.
    R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. Lett. 8, 404 (1962).CrossRefGoogle Scholar
  12. 12.
    D. S. Bethune, R. W. Smith, and Y. R. Shen, Phys. Rev. Lett. 37, 431 (1976).CrossRefGoogle Scholar
  13. 13.
    B. Koopmans, A.-M. Janner, H. T. Jonkman, G. A. Sawatzky, and F. van der Woude, Phys. Rev. Lett. 71, 3569(1993).CrossRefGoogle Scholar
  14. 14.
    M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, Phys. Rev. Lett. 73, 2127 (1993).CrossRefGoogle Scholar
  15. 15.
    Z. Shuai and J. L. Bredas, Adv. Mater. 6, 486 (1994).CrossRefGoogle Scholar
  16. 16.
    E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, Phys. Rev. Lett. 65, 37 (1990).CrossRefGoogle Scholar
  17. 17.
    See for example, L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge, Cambridge, 1982).Google Scholar
  18. 18.
    J. Tomaszewski and M. M. Rumore, Drug. Dev. Ind. Pharm. 20(2), 119 (1994).CrossRefGoogle Scholar
  19. 19.
    D. L. Andrews and T. Thirunamachandran, J. Chem. Phys. 70, 1027 (1979).CrossRefGoogle Scholar
  20. 20.
    Y. T. Lam and T. Thirunamachandran, J. Chem. Phys. 77, 3810 (1982).CrossRefGoogle Scholar
  21. 21.
    G. Wagnière, Chem. Phys. 54, 411 (1981).CrossRefGoogle Scholar
  22. 22.
    G. Wagnière, J. Chem. Phys. 77, 2786 (1982).CrossRefGoogle Scholar
  23. 23.
    T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Lee, and J. M. Hicks, J. Phys. Chem. 97, 1383 (1993).CrossRefGoogle Scholar
  24. 24.
    J. D. Byers, H. L. Lee, T. Petralli-Mallow, and J. M. Hicks, Phys. Rev. B 49, 14643 (1994).CrossRefGoogle Scholar
  25. 25.
    M. J. Crawford, S. Haslam, J. M. Probert, Y. A. Gruzdkov, and J. G. Frey, Chem. Phys. Lett. 229, 260 (1994).Google Scholar
  26. 26.
    M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, J. Chem. Phys. 101, 8193 (1994).CrossRefGoogle Scholar
  27. 27.
    M. Kauranen, T. Verbiest, E. W. Meijer, E. E. Havinga, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, Adv. Mater. 7, 641 (1995).CrossRefGoogle Scholar
  28. 28.
    M. Kauranen, J. J. Maki, and A. Persoons, in Nonlinear Optical Properties of Organic Materials VIII, edited by G. R. Möhlmann, Proc. SPIE 2527, 328 (1995).Google Scholar
  29. 29.
    J. D. Byers, H. I. Lee, and J. M. Hicks, J. Chem. Phys. 101, 6233 (1994).CrossRefGoogle Scholar
  30. 30.
    T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, J. Chem. Phys. 103, 8296 (1995).CrossRefGoogle Scholar
  31. 31.
    M. Kauranen, T. Verbiest, and A. Persoons, submitted to J. Mod. Opt.Google Scholar
  32. 32.
    J. D. Byers and J. M. Hicks, Chem. Phys. Lett. 231, 216 (1994).CrossRefGoogle Scholar
  33. 33.
    M. Kauranen, T. Verbiest, and A. Persoons, Nonlinear Optics 8, 243 (1994).Google Scholar
  34. 34.
    J. J. Maki, M. Kauranen, and A. Persoons, Phys. Rev. B 51, 1425 (1995).CrossRefGoogle Scholar
  35. 35.
    M. Kauranen, J. J. Maki, T. Verbiest, S. Van Elshocht, and A. Persoons, Phys. Rev. B 55, R1985 (1997).CrossRefGoogle Scholar
  36. 36.
    S. Van Elshocht, T. Verbiest, M. Kauranen, and A. Persoons, submitted to Opt. Lett.Google Scholar
  37. 37.
    T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, Phys. Rev. Lett. 77, 1456 (1996).CrossRefGoogle Scholar
  38. 38.
    M. Kauranen, T. Verbiest, and A. Persoons, post-deadline paper PD3, Annual Meeting of the Optical Society of America, October 20-24, 1996, Rochester, New York; For a summary, see Optics and Photonics News 8, No. 4, April 1997, p. 50.Google Scholar
  39. 39.
    P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).CrossRefGoogle Scholar
  40. 40.
    P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 35, 4420 (1987).CrossRefGoogle Scholar
  41. 41.
    P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 38, 7985 (1988).CrossRefGoogle Scholar
  42. 42.
    J. E. Sipe, V. Mizrahi, and G. I. Stegeman, Phys. Rev. B. 35, 9091 (1987).CrossRefGoogle Scholar
  43. 43.
    J. J. Maki, T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, J. Chem. Phys. 105, 767 (1996).CrossRefGoogle Scholar
  44. 44.
    J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, Phys. Rev. B 55, 5021 (1997).CrossRefGoogle Scholar
  45. 45.
    M. M. Bouman, E. E. Havinga, R. A. J. Janssen, and E. W. Meijer, Mol. Cryst. Liq. Cryst. 256, 439 (1994).CrossRefGoogle Scholar
  46. 46.
    N. A. Cherepkov and V. V. Kuznetsov, J. Chem. Phys. 95, 3046 (1991).CrossRefGoogle Scholar
  47. 47.
    T. Verbiest, M. Kauranen, and A. Persoons, submitted to J. Opt. Soc. Am. B.Google Scholar
  48. 48.
    G. Decher, B. Tieke, Ch. Bosshard, and P. Günter, J. Chem. Soc. Chem. Commun. 19, 933 (1988).CrossRefGoogle Scholar
  49. 49.
    W. M. K. P. Wijekoon, S. P. Kama, G. B. Talapatra, and P. N. Prasad, J. Opt. Soc. Am. B 10, 213 (1993).CrossRefGoogle Scholar
  50. 50.
    T. Verbiest, Y. Van Rompaey, M. Kauranen, and A. Persoons, Chem. Phys. Lett. 257, 285 (1996).CrossRefGoogle Scholar
  51. 51.
    R. Stolle, M. Loddoch, and G. Marowsky, Nonlinear Optics 8, 79 (1994).Google Scholar
  52. 52.
    See for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).Google Scholar
  53. 53.
    H. F. Hameka, Chem. Phys. Lett. 7, 157 (1970).CrossRefGoogle Scholar
  54. 54.
    A. D. Buckingham, C. Graham, R. E. Raab, Chem. Phys. Lett. 8, 622 (1971).CrossRefGoogle Scholar
  55. 55.
    N. B. Baranova, Yu. V. Bogdanov, and B. Ya. Zel’dovich, Sov. Phys. Usp. 20, 870 (1977).CrossRefGoogle Scholar
  56. 56.
    N. I. Koroteev, JETP 79, 681 (1994).Google Scholar
  57. 57.
    See for example Eq. (3.6.18) of Ref. 1.Google Scholar
  58. 58.
    N. Bloembergen, H. Lotem, and R. T. Lynch, Jr., Indian J. Pure Appl. Phys. 16, 151 (1978).Google Scholar
  59. 59.
    G. S. Agarwal, Adv. At. Mol. Phys. 29, 113 (1992).CrossRefGoogle Scholar
  60. 60.
    A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).CrossRefGoogle Scholar
  61. 61.
    P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge, Cambridge, 1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Martti Kauranen
    • 1
  • Thierry Verbiest
    • 1
  • Sven Van Elshocht
    • 1
  • André Persoons
    • 1
  1. 1.Laboratory of Chemical and Biological Dynamics and Center for Research on Molecular Electronics and PhotonicsKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations