Radiation-Induced Responses in Mammalian Cells

  • Gayle E. Woloschak

Abstract

In bacteria, a well-characterized response to cellular stress DNA damage has been identified and termed the SOS response. This response is a program of gene induction that allows bacteria to respond to damaged DNA and other cellular stresses in a protective manner, allowing for optimal conditions for cell survival (Ossanna et al., 1987). In mammalian cells, a similar DNA-damage response pathway has been shown to exist, but the mechanisms regulated by this pathway are not as clear-cut as in bacteria (Herrlich et al., 1984, 1986; Mai et al., 1989).

Keywords

Human Immunodeficiency Virus Type Radiation Exposure Gene Induction Differential Display Radiation Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andalibi, A., Liao, F., Imes, S., Fogelman, A. M., and Lusis, A. J., 1993, Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-KB, Biochem, Soc. Trans. 21: 651–655.Google Scholar
  2. Anderson, A., and Woloschak, G. E., 1992, Cellular proto-oncogene expression following exposure of mice to -y-rays, Radiat. Res. 130: 340–344.PubMedGoogle Scholar
  3. Angel, P., Poting, A., Mallick, U., Rahmsdorf, H. J., Schorpp, M., and Herrlich, P., 1986, Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts, Mol. Cell. Biol. 6: 1760–1766.Google Scholar
  4. Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., Jonat, C., Herrlich, P., and Karin, M., 1987, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor, Cell 49: 729–739.PubMedGoogle Scholar
  5. Mischer, M. S., Crocker, J. R., and Jirtle, R. L., 1992, Transforming growth factor-13–1 expression in irradiated liver, Radtat. Res. 122: 77–85.Google Scholar
  6. Ansel, J., Luger, T. A., Kock, A., Hochstein, D., and Green, I., 1984, The effect of in vitro UV irradiation on the production of Ill by murine macrophages and P388D1 cells, J. Immunol. 133: 1350–1355.PubMedGoogle Scholar
  7. Applegate, L. A., and Ley, R. D., 1987, Excision repair of pyrimidine dimers in marsupial cells, Photochem. Photobiol. 45: 241–245.PubMedGoogle Scholar
  8. Barendsen, G. W., 1986, Effects of radiation on the reproductive capacity and proliferation of cells in relation to carcinogenesis, Irr Radiation Carcinogenesis (R. E. Upton, F. J. Albert, and R. E. Shore, eds.), Elsevier, Amsterdam, pp. 85–106.Google Scholar
  9. Baughman, G., Lesley, J., Trotter, J., Hyman, R., and Bourgeois, S., 1992, Tcl-30, a new T cell-specific gene expressed in immature glucocorticoid-sensitive thymocytes, J. Immunol. 149: 1488–1496.Google Scholar
  10. Ben-Ishai, R, Sharon, R, Rothman, M., and Miskin, R., 1984, DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light, Carcinogenesis 5: 357–362.PubMedGoogle Scholar
  11. Ben-Ishai, R, Scharf, R, Sharon, R., and Kapten, I., 1990, A human cellular sequence implicated in trk oncogene activation is DNA damage inducible, Proc. Natl. Acad. Sci. USA 87: 6039–6043.Google Scholar
  12. Biswas, D. K., Dezube, B. J., Ahlers, C. M., and Pardee, A. B., 1993, Pentoxifylline inhibits HIV-1 LTR-driven gene expression by blocking NFKB action, J. AIDS 6: 778–786.Google Scholar
  13. Boothman, D. A., and Pardee, A. B., 1989, Inhibition of radiation-induced neoplastic transformation by beta lapachone, Proc. Natl. Acad. ScL USA 86: 49634967.Google Scholar
  14. Boothman, D. A., Lee, S., Trask, D. K., Dou, Q-P., and Hughes, E. N., 1990, X-ray-inducible proteins and genes in human cells, in: Ionizing Radiation Damage to DNA: Molecular Aspects ( S. S. Wallace and R. B. Painter, eds.), Wiley-Liss, New York, pp. 309–317.Google Scholar
  15. Boothman, D. A., Wang, M., and Lee, S. W., 1991, Induction of tissue-type plasminogen activator by ionizing radiation in human malignant melanoma cells, Cancer Res. 51: 5587–5595.PubMedGoogle Scholar
  16. Boothman, D A., Meyers, M., Fukunaga, N., and Lee, S. W., 1993, Isolation of x-ray-inducible transcripts from radioresistant human melanoma cells, Proc. Natl. Acad. Sci. USA 90: 7200–7204.PubMedGoogle Scholar
  17. Boothman, D. A., Davis, T. W., and Sahijdak, W. M., 1994a, Enhanced expression of thymidine kinase in human cells following ionizing radiation, Int. J. Radiat. Biol. 30: 391–398.Google Scholar
  18. Boothman, D. A., Fukunaga, N., and Wang, M., 1994b, Down-regulation of topoisomerase I in mammalian cells following ionizing radiation, Cancer Res. 54: 4618–4626.PubMedGoogle Scholar
  19. Boothman, D. A., Lee, I. W., and Sahijdak, W. M., 1994c, Isolation of an x-ray-responsive element in the promoter region of tissue-type plasminogen activator: Potential uses of x-ray-responsive elements for gene therapy, Radiat. Res. 138: S68 - S71.PubMedGoogle Scholar
  20. Brach, M. A., Hass, R., Sherman, M. L., Gunji, H., Weichselbaum, R., and Kufe, D., 1991, Ionizing radiation induces expression and binding activity of the nuclear factor KB, J. Clin. Invest. 88: 691–695.PubMedGoogle Scholar
  21. Brach, M. A., Gruss, H. J., Kaisho, T., and Asano, Y., 1993, Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor kappa B, J. Biol. Chem. 268: 8466–8472.PubMedGoogle Scholar
  22. Brenner, D. J., and Hall, E. J., 1990, The inverse dose-rate effect for oncogenic transformation by neutrons and charged particles: A plausible interpretation consistent with published data, Int. J. Radiat. Biol. 58: 745–758.PubMedGoogle Scholar
  23. Búscher, M., Rahmsdorf, H. J., Litfin, M., Karin, M., and Herrlich, P., 1988, Activation of the c-fos gene by UV and phorbol ester: Different signal transduction pathways converge to the same enhancer element, Oncogene 3: 301–311.PubMedGoogle Scholar
  24. Cavard, C., Zider, A., Vernet, M., Bennon, M., Saragosti, S., Grimber, G., and Briand, P., 1990, In vivo activation by ultraviolet rays of the human immunodeficiency virus type 1 long terminal repeat, J. Clin. Invest. 86: 1369–1374.PubMedGoogle Scholar
  25. Chen, M., Quintans, J, Fuks, Z., Thompson, C., Kufe, D. W., and Weichselbaum, R. R., 1995, Suppression of Bd-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor a, and ceramide, Cancer Res. 55: 991–994.PubMedGoogle Scholar
  26. Chiang, C. S., and McBride, W. H., 1991, Radiation enhances tumor necrosis factor a production by murine brain cells, Brain Res. 566: 265–269.PubMedGoogle Scholar
  27. Cleaver, J. E., and Morgan, W. F., 1991, Poly(ADP-ribose)polymerase: A perplexing participant in cellular responses to DNA breakage, Mutat. Res. 257: 1–18.Google Scholar
  28. Cohn, S. M., Krawisz, B. R., Dresler, S. L., and Lieberman, M. W., 1984, Induction of replicative DNA synthesis in quiescent human fibroblasts by DNA damaging agents, Proc. Natl. Acad. Sci. USA 81: 4828–4832.PubMedGoogle Scholar
  29. Cutler, R. G., and Semsei, I., 1989, Development, cancer and aging. Possible common mechanisms of action and regulation, J. GerontoL 44: 25–34.PubMedGoogle Scholar
  30. Datta, R, Rubin, E., Sukhatme, V., Qureshi, S., Hallahan, D., Weichselbaum, R. R., and Kufe, D. W., 1992, Ionizing radiation activates transcription of the EGR1 gene via CArG elements, Proc. Natl. Acad. Sci. USA 89: 10149–10153.PubMedGoogle Scholar
  31. Datta, R, Taneja, N., Sukhatme, V., Qureshi, S. A., Weichselbaum, R, and Kufe, D. W., 1993a, Reactive oxygen intermediates target CC(A/T)GGG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation, Proc. Natl. Acad. Sci. USA 90: 2419–2422.PubMedGoogle Scholar
  32. Datta, R., Weichselbaum, R., and Kufe, D. W., 1993b, Ionizing radiation down-regulates histone Hl gene expression by transcriptional and post-transcriptional mechanisms, Radiat. Res. 133: 176–181.Google Scholar
  33. Devary, Y., Rosette, C., DiDonato, J. A., and Karin, M., 1993, NFKB activation by ultraviolet light not dependent on a nuclear signal, Science 261: 1442–1445.PubMedGoogle Scholar
  34. Dice, J. F., 1993, Cellular and molecular mechanisms of aging, Physioi. Rev. 73: 149–159.Google Scholar
  35. Dominguez, I., Sanz, L., Arenzana-Seisdedos, F., and Diaz-Meco, M. T., 1993, Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-KB-like activity in Xenopus laevis oocytes, Mol. Cell. Biol. 13: 1290–1295.PubMedGoogle Scholar
  36. Engstrom, Y., Kadalayil, L., Sun, S.-C., Samakovlis, C., Hultmark, D., and Faye, I., 1993, KB-like motifs regulate the induction of immune genes in Drosophila, J. MoL Biol. 232: 327–333.PubMedGoogle Scholar
  37. Finco, T. S., and Baldwin, A. S., 1993, KB site-dependent induction of gene expression by diverse inducers of nuclear factor KB requires Raf-1, J. Biol. Chem. 268: 17676–17679.PubMedGoogle Scholar
  38. Fornace, A. J., Jr., 1992, Mammalian genes induced by radiation: activation of genes associated with growth control, Ann. Rev. Genet. 26: 507–526.PubMedGoogle Scholar
  39. Fornace, A. J., Jr., Alamo, I., Jr., and Hollander, C. M., 1988, DNA damage-inducible transcripts in mammalian cells, Proc. Natl. Acad. ScL USA 85: 8800–8804.Google Scholar
  40. Fornace, A. J., Jr., Alamo, I., Hollander, C. M., and Lamoreaux, E., 1989a, Ubiquitin RNA is a major stress-induced transcript in mammalian cells, Nucleic Acids Res. 17: 1215–1230.PubMedGoogle Scholar
  41. Fornace, A. J., Jr., Fargnoli, J., Papathanasiou, M., Holbrook, N. J., Hollander, C. M., Nebert, D. W., and Luethy, J. D., 1989b, Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents, Mol. Cell. Biol. 9: 4196–4203.PubMedGoogle Scholar
  42. Fornace, A. J., Jr., Zmudzka, B., Hollander, C. M., and Wilson, S. H., 1989c, Induction of 13-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells, Moi Cell. Biol. 9: 851–853.Google Scholar
  43. Frantz, B., and O’Neill, E. A., 1995, The effect of sodium salicylate and aspirin on NF-KB, Science 270: 2017–2019.PubMedGoogle Scholar
  44. Fritz, G., Tano, K., Mitra, S., and Kaina, B., 1991, Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA damaging treatments, MoL Cell. Biol. 11: 4660–4668.PubMedGoogle Scholar
  45. Fuchs, P., Krolak, J. M., McClain, D., and Minton, K. W., 1990, 18S RNA degradation is not accompanied by altered rRNA transport at early times following irradiation of HeLa cells, Radiat. Res. 121: 67–70.Google Scholar
  46. Fuks, Z., Persaud, R. S., Alfiere, A., McLoughlin, M., Ehleiter, D., Schwartz, J. L., Seddon, A. P., Cordon-Cardo, C., and Haimovitz-Friedman, A., 1994, Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo, Cancer Res. 54: 2582–2590.PubMedGoogle Scholar
  47. Gerstenfeld, L. C., Finer, M. H., and Boedtker, H., 1985, Altered ß-actin gene expression in phorbol myristate acetate-treated chondrocytes and fibroblasts, Mol. Cell. Biol. 5: 1425–1433.PubMedGoogle Scholar
  48. Greenberg, M. E., Hermanowski, A. L., and Ziff, E. B., 1986, Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription, Mol. Cell. Biol. 6: 1050–1057.PubMedGoogle Scholar
  49. Hagedorn, R., Thielmann, H. W., Fischer, H., and Schroedes, C. H., 1983, SV40induced transformation and T-antigen production is enhanced in normal and repair-deficient human fibroblasts after pretreatment of cells with UV light, J. Cancer Res. Clin. Oncot. 106: 93–96.Google Scholar
  50. Haimovitz-Friedman, A., Vlodaysky, I., Chaudhuri, A., Witte, L., and Fuks, Z., 1991, Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells, Cancer Res. 51: 2552–2558.PubMedGoogle Scholar
  51. Hallahan, D. E., Spriggs, D. R, Beckett, M. A., Kufe, D. W., and Weichselbaum, R R., 1989, Increased tumor necrosis factor a mRNA after cellular exposure to ionizing radiation, Proc. Nati Acad. Sci. USA 86: 10104–10107.Google Scholar
  52. Hallahan, D. E., Sukhatme, V. P., Sherman, M. L., Virudachalam, S., Kufe, D. W., and Weichselbaum, R R., 1991a, Protein kinase C mediates X-ray inducibility of nuclear signal transducers egr-1 and Jun, Proc. Natl. Acad. Sci USA 88: 2156–2160.PubMedGoogle Scholar
  53. Hallahan, D. E., Virudachalam, S., Sherman, M. L., Huberman, E., Kufe, D. W., and Weichselbaum, R. R., 1991b, Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation, Cancer Res. 17: 4565–4569.Google Scholar
  54. Hallahan, D. E., Gius, D., Kuchibhotla, J., Sukhatme, V., Kufe, D. W., and Weichselbaum, R. R., 1993, Radiation signaling mediated by Jun activation following dissociation from a cell type-specific repressor, J. Biol. Chem. 268: 4903–4907.PubMedGoogle Scholar
  55. Hallahan, D. E., Virudachalam, S., Kufe, D. W., and Weichselbaum, R R, 1994a, Ketoconazole attenuates radiation-induction of tumor necrosis factor, int. J. Radiai Oncoi Biol. Phys. 29: 777–780.Google Scholar
  56. Hallahan, D. E., Virudachalam, S., Kuchibhotla, J., Kufe, D. W., and Weichselbaum, R. R., 1994b, Membrane-derived second messenger regulates x-ray-mediated tumor necrosis factor alpha gene induction, Proc. Nati Acad. Sci USA 91: 4897–4901.Google Scholar
  57. Hallahan, D. E., Bleakman, D., Virudachalam, S., Lee. D., Grdina, D., Kufe, D. W., and Weichselbaum, R. R., 1994c, The role of intracellular calcium in the cellular response to ionizing radiation, Radiai Res. 138: 392–400.Google Scholar
  58. Hallahan, D. E., Dunphy, E., Virudachalam, S., Sukhatme, V. P., Kufe, D. W., and Weichselbaum, R. R., 1995a, c-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure, J. Biol. Chem. 270: 30303–30309.Google Scholar
  59. Hallahan, D. E., Clark, E. T., Kuchibhotla, J., Gewertz, B. L., and Collins, T., 1995b, E-selectin gene induction by ionizing radiation is independent of cytokine induction, Biochem. Biophys. Res. Commun. 217: 784–795.PubMedGoogle Scholar
  60. Hallahan, D. E., Kufe, D. W., and Weichselbaum, R R, 1995c, Spatial and temporal control of gene therapy using ionizing radiation, Nature Med. 1: 786–791.PubMedGoogle Scholar
  61. Han, A., Hill, C. K, and Elkind, M. M., 1980, Repair of cell killing and neoplastic transformation at reduced dose rates of 60Co y rays, Cancer Res. 40: 3328–3332.PubMedGoogle Scholar
  62. Hayashi, T., Ueno, Y., and Okamoto, T., 1993, Oxidoreductive regulation of NF-KB. Involvement of a cellular reducing catalyst thioredoxin, J. Biol. Chem. 268: 11380–11388.PubMedGoogle Scholar
  63. Herrlich, P., Mallick, U., Ponta, H., and Rahmsdorf, H. J., 1984, Genetic changes in mammalian cells reminiscent of an SOS response, Hum. Genet. 67: 360–368.PubMedGoogle Scholar
  64. Herrlich, P., Angel, P., Rahmsdorf, H. J., Mallick, U., Poling, A., Hieber, L., LückeHuhle, C., and Schorpp, M., 1986, The mammalian genetic stress response, Adv. Enzyme Regui. 25: 485–504.Google Scholar
  65. Herrlich, P., Ponta, H., and Rahmsdorf, H.J., 1992, DNA damage-induced gene expression: Signal transduction and relation to growth factor signaling, Rev. Physioi. Biochem. Pharmacol. 119: 187–216.Google Scholar
  66. Hilgers, G., Clauss, I. M., Huez, G. A., and Rommelaere, J., 1991, Post-transcriptional effect of ultraviolet light on gene expression in human cells, Eur. J. Biochem. 201: 483–488.PubMedGoogle Scholar
  67. Hill, C. K., Han, A., and Elkind, M. M., 1987, Promotion, dose rate, and repair processes in radiation-induced neoplastic transformation, Radiat. Res. 109: 347–351.PubMedGoogle Scholar
  68. Hiscott, J., Marois, J., Garoufalis, J, and D’Addario, M., 1993, Characterization of a functional NF-KB site in the human interleukin 1 beta promoter: Evidence for a positive autoregulatory loop, Mol. Cell. Biol. 13: 6231–6240.PubMedGoogle Scholar
  69. Holbrook, N. J., and Fornace, A. J., Jr., 1991, Response to adversity: Molecular control of gene activation following genotoxic stress, New Biol. 3: 825–833.PubMedGoogle Scholar
  70. Hollander, C., and Fornace, A. J., Jr., 1989, Induction of fos RNA by DNA-damaging agents, Cancer Res. 49: 1687–1692.PubMedGoogle Scholar
  71. Ijichi, A., Sakuma, S., and Tofilon, P. J., 1995, Hypoxia-induced vascular endothelial growth factor expression in normal rat astrocyte cultures, Glia 14: 87–93.PubMedGoogle Scholar
  72. Jones, J. S., and Prakash, L., 1991, Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV-irradiated cells and during meiosis but not during the mitotic cell cycle, Nucleic Acids Res. 19: 893–898.PubMedGoogle Scholar
  73. Kaina, B., Stein, B., Schönthal, A., Rahmsdorf, H. J., Ponta, H., and Herrlich, P., 1989, An update of the mammalian UV response: Gene regulation and induction of a protective function, in: DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells (M. W. Lambert and J. Laval, eds.), Plenum Press, New York, pp. 149–165.Google Scholar
  74. Kartasova, T., and van de Putte, P., 1988, Cis-and trans-acting genetic elements responsible for induction of specific genes by tumor promoters, serum factors, and stress, in: Genes and Signal Transduction in Multistage Carcinogenesis (N. H. Colburn, ed.), Dekker, New York, pp. 415–440.Google Scholar
  75. Kartasova, T., Cornelissen, B. J. C., Belt, P., and van de Putte, P., 1987, Effects of UV, 4-NQO, and TPA on gene expression in cultured human epidermal keratinocytes, Nucleic Acids Res. 15: 5945–5962.PubMedGoogle Scholar
  76. Kasid, U., Plrollo, K., Dritschilo, A., and Chang, E., 1993, Oncogenic basis of radiation resistance, Adv. Cancer Res. 61: 195–233.PubMedGoogle Scholar
  77. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W., 1991, Participation of p53 protein in the cellular response to DNA damage, Cancer Res. 51: 6304–6311.PubMedGoogle Scholar
  78. Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr., 1992, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia telangiectasia, Cell 71: 587–597.PubMedGoogle Scholar
  79. Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M. B., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R, 1993, Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage, Proc. Natl. Acad. Sci. USA 90: 3988–3992.PubMedGoogle Scholar
  80. Keys, S. M., and Tyrell, R M., 1989, Herne oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc. Natl. Acad. Sci. USA 86: 99–103.Google Scholar
  81. Kharbanda, S., Ren, R., Pandey, P., Shafman, T. D., Feller, S. M., Weichselbaum, R R, and Kufe, D. W., 1995, Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents, Nature 376: 785–788.PubMedGoogle Scholar
  82. Komatsu, K., Sawada, S., Takeoka, S., Kodama, S., and Okumura, Y., 1993, Dose-rate effects of neutrons and y-rays on the induction of mutation and oncogenic transformation in plateau-phase mouse m5S cells, Int. J. Radiai. BioL 63: 469–474.Google Scholar
  83. Koong, A. C., Chen, E. Y., and Giaccia, A. J., 1994, Hypoxia causes the activation of nuclear factor KB through the phosphorylation of IKBa on tyrosine residues, Cancer Res. 54: 1425–1430.PubMedGoogle Scholar
  84. Kopp, E., and Ghosh, S., 1994, Inhibition of NF-KB by sodium salicylate and aspirin, Science 265: 956–959.PubMedGoogle Scholar
  85. Krämer, M., Stein, B., Mai, S., Kunz, E., König, H., Loferer, H., Grunicke, H. H., Ponta, H., Herrlich, P., and Rahmsdorf, H. J., 1990, Radiation-induced activation of transcription factors in mammalian cells, Radiat. Environ. Biophys. 29: 303–313.Google Scholar
  86. Krämer, M., Sachsenmaier, C., Herrlich, P., and Rahmsdorf, H. J., 1993, UV-irradiation induced interleukin 1 and basic fibroblast growth factor synthesis and release mediate part of the UV response, J. BioL Chem. 268: 6734–6741.PubMedGoogle Scholar
  87. Kretzchmar, M., Meisterenst, M., Scheidereit, C., Li, G., and Roeder, R. G., 1992, Transcriptional regulation of the HIV-1 promoter by NF-KB in vitro, Genes Del). 6: 761–774.Google Scholar
  88. Kunsch, C., and Rosen, C. A., 1993, NF-KB subunit-specific regulation of the interleukin-8 promoter, Mol. Cell. Biol. 13: 6137–6146.PubMedGoogle Scholar
  89. Lacoste, J., D’Addario, M., Roulston, A., Wainberg, M. A., and Hiscott, J., 1990, Cell-specific differences in activation of NF-KB regulatory elements of human immunodeficiency virus and ß interferon promoters by tumor necrosis factor, J. Virol 64: 4726–4734.Google Scholar
  90. Lambert, M. E., Ronal, Z. A., Weinstein, I. B., and Garrels, J. I., 1989, Enhancement of major histocompatibility class I protein synthesis by DNA damage in cultured human fibroblasts and keratinocytes, Moi. Cell. Biol. 9: 847–850.Google Scholar
  91. Liang, P., and Pardee, A. B., 1992, Differential display of eukaryotic messenger RNA by means of polymerase chain reaction, Science 257: 969–971.Google Scholar
  92. Liang, P., Averboukh, L, Keyomarsi, K., Sager, R., and Pardee, A. B., 1992, Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells, Cancer Res. 52: 6966–6968.PubMedGoogle Scholar
  93. Liang, P., Averboukh, L., and Pardee, A. B., 1993, Distribution and cloning of eukaryotic mRNAs by means of differential display: Refinements and optimization, Nucleic Acids Res. 21: 3269–3275.PubMedGoogle Scholar
  94. Libertin, C. R, Panozzo, J., Groh, K. R., Chang-Liu, C.-M., Schreck, S., and Woloschak, G. E., 1994, Effects of gamma rays, ultraviolet radiation, sunlight, microwaves, and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter, Radiat. Res. 140: 91–96.Google Scholar
  95. Lieberman, M. W., Beach, L. R., and Palmiter, R. D., 1983, Ultraviolet radiation-induced metallothionein-I gene activation is associated with extensive DNA demethylation, Cell 35: 207–214.PubMedGoogle Scholar
  96. Lin, C. S., Goldthwait, D. A. and Samols, D., 1990, Induction of transcription from the long terminal repeat of Moloney murine sarcoma provirus by UV-irradiation, X-irradiation, and phorbol ester, Proc. Natl. Acad. Sci. USA 87: 36–40.PubMedGoogle Scholar
  97. Liou, H. C., and Baltimore, D., 1993, Regulation of the NF-KB/rel transcription factor and IKB inhibitor system, Curr. Opin. Cell. Biol. 5: 477–487.PubMedGoogle Scholar
  98. Mai, S., Stein, B., Vandenberg, S., Kaina, B., Lücke-Huhle, C., Ponta, H., Rahmsdorf, H. J., Kraemer, M., Gebel, S., and Herrlich, P., 1989, Mechanisms of the UV response in mammalian cells, J. Cell Sci. 94: 609–615.PubMedGoogle Scholar
  99. Maltzman, W., and Czyzyk, L., 1984, UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells, Mol. Cell. Biol. 4: 1689–1694.PubMedGoogle Scholar
  100. Mangan, D. F., Robertson, B., and Wahl, S. M., 1992, IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes, J. Immunoi. 148: 1812–1816.Google Scholar
  101. Martin, M., Cefaix, J.-L., Pinton, P., Crechet, F., and Daburton, F., 1993, Temporal modulation of TGR-31 and 3-actin gene expression in pig skin and muscular fibrosis after ionizing radiation, Radiat. Res. 134: 63–70.PubMedGoogle Scholar
  102. Matsui, M. S., and DeLeo, V. A., 1990, Induction of protein kinase C activity by ultraviolet radiation, Carcinogenesis 11: 229–234.PubMedGoogle Scholar
  103. McAnulty, R. J., Moores, S. R, Talbot, R. J., Bishop, J. E., Mays, P. K., and Laurent G. J., 1991, Long-term changes in mouse lung following inhalation of a fibrosis-inducing dose of 239Pu 02: Changes in collagen synthesis and degradation rates, Int. J. Radiat. Biol. 59: 229–238.PubMedGoogle Scholar
  104. McKenna, W., Iliakis, G., Weiss, M. C., Bernhard, E. J., and Muschel, R. J., 1991, Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with oncogenes H- rasand v-myc, Radiat. Res. 125: 283–287.PubMedGoogle Scholar
  105. McWilliams R S Gross, W. G., Kaplan, J. G., and Birnboim, H. C., 1983, Rapid rejoining of DNA strand breaks in resting human lymphocytes after irradiation by low doses of 60Co y-rays or 14.6-MeV neutrons, Radiat. Res. 94: 499–507.Google Scholar
  106. Messer, G., Weiss, E. H., and Baeuerle, P. A., 1990, Tumor necrosis factor beta (TNF-3) induces binding of the NF-KB transcription factor to a high-affinity KB element in the TNF-3 promoter, Cytokine 2: 389–397.PubMedGoogle Scholar
  107. Miskin, R., and Ben-Ishai, R., 1981, Induction of plasminogen activator by UV light in normal and xeroderma pigmentosum fibroblasts, Proc. Nati Acad. Sci. USA 78: 6236–6240.Google Scholar
  108. Mohan, N., and Meltz, M. L., 1994, Induction of nuclear factor KB after low-dose ionizing radiation involves a reactive oxygen intermediate signaling pathway, Radiat. Res. 140: 97–104.PubMedGoogle Scholar
  109. Morrey, J. D., Bourn, S. M., Bunch, T. D., Jackson, M. K., Sidwell, R. W., Barrows, L. R., Daynes, R. A., and Rosen, C. A., 1991, In vivo activation of human immunodeficiency virus type 1 long terminal repeat by UV type A (UVA) light plus psoralen and UVB light in the skin of transgenic mice, J. Viroi. 65: 5045–5051.Google Scholar
  110. Mossman, T. R., and Coffman, R. L., 1989, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties, Ann. Rev. Irnmunol. 7: 145–174.Google Scholar
  111. Munson, G., and Woloschak, G. E., 1990, Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice, Cancer Res. 50: 5045–5048.PubMedGoogle Scholar
  112. Muschel, R J., Zhang, H. B., and McKenna, W. B., 1993, Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in HeLa cells, Cancer Res. 53: 1128–1135.PubMedGoogle Scholar
  113. Nelson, W. G., and Kastan, M. B., 1994, DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways, Mol. Cell. Biot. 14: 1815–1823.Google Scholar
  114. Neta, R., and Oppenheim, J. J., 1988, Cytokines in therapy of radiation injury, Blood 72: 1093–1095.PubMedGoogle Scholar
  115. Neta, R., and Oppenheim, J. J., 1991, Radioprotection with cytokines. Learning from nature to cope with radiation damage, Cancer Cell 3: 391–396.Google Scholar
  116. Neta, R., Oppenheim, J. J., and Douches, S. D., 1988, Interdependence of the radioprotective effects of human recombinant IL-1, TNF, G-CSF, and murine recombinant G-CSF, J. Immunoi. 140: 108–111.Google Scholar
  117. Neta, R, Monroy, R, and MacVittie, T. J., 1989, Utility of interleukin 1 in therapy of radiation injury as studied in small and large animal models, Biotherapy 1: 301–311.PubMedGoogle Scholar
  118. Oleinick, N. L., and Evans, H. H., 1985, Poly(ADP-ribose) and the response of cells to ionizing radiation, Radiai. Res. 101: 29–46.Google Scholar
  119. Oliff, A., Defeo-Jones, D., Boyer, M., Martinez, D., Diefer, D., Vuocolo, G., Wolfe, A., and Socher, S. H., 1987, Tumors secreting human TNF/cachexin induce cachexia in mice, Cell 50: 555–563.PubMedGoogle Scholar
  120. Ossanna, N., Peterson, K. R., and Mount, D. W., 1987, UV-inducible SOS response in Escherichia coli, Photobiology 45: 905–908.Google Scholar
  121. Owens, G. P., Hahn, W. E., and Cohen, J. J., 1991, Identification of mRNAs associated with programmed cell death in immature thymocytes, Moi. Ceti Biol. 8: 4177–4188.Google Scholar
  122. Painter, R B., and Young, B. R, 1987, DNA synthesis in irradiated mammalian cells, J. Cell Sci. Suppl. 6: 207–214.PubMedGoogle Scholar
  123. Panozzo, J., Bertoncini, D., Miller, D., Libertin, C. R., and Woloschak, G. E., 1991, Modulation of expression of virus-like elements following exposure of mice to high-and low-LET radiations, Carcinogenesis 12: 801–804.PubMedGoogle Scholar
  124. Papathanasiou, M. A., Kerr, N. C. K., Robbins, J. H., McBride, O. W., Alamo, I., Jr., Barrett, S. F., Hickson, I. D., and Fornace, A. J., Jr., 1991, Induction by ionizing radiation of the gadd45 gene in cultured human cells: Lack of mediation by protein kinase C, Mol. Cell. Biol. 11: 1009–1016.PubMedGoogle Scholar
  125. Peak, J. G., Woloschak, G. E., and Peak, M. J., 1991, Enhanced expression of protein kinase C gene caused by solar radiation, Photochem. Photobioi. 53: 395–397.Google Scholar
  126. Perkins, N. D., Edwards, N. L., Duckett, C. S., and Agranoff, A. B., 1993, A cooperative interaction between NF-KB and Spl is required for HIV-1 enhancer activation, EMBO J. 12: 3551–3558.Google Scholar
  127. Peter, R. U., Beetz, A., Ried, C., Michel, G., van Beuningen, D, and Ruzicka, T., 1993, Increased expression of the epidermal growth factor receptor in human epidermal keratinocytes after exposure to ionizing radiation, Radiai. Res. 136: 65–70.Google Scholar
  128. Prasad, A. V., Mohan, N., Chandrasekar, B., and Meltz, M. L., 1994, Activation of nuclear factor KB in human lymphoblastoid cells by low-dose ionizing radiation, Radiat. Res. 138: 367–372.PubMedGoogle Scholar
  129. Ramsamooj, P., Kasid, U., and Dritschilo, A., 1992, Differential expression of proteins in radioresistant and radiosensitive human squamous carcinoma cells, J. Nati Cancer Inst. 84: 622–628.Google Scholar
  130. Rand, A., and Koval, T. M., 1994, Coordinate regulation of proteins associated with radiation resistance in cultured insect cells, Radiat. Res. 138: S13 - S16.PubMedGoogle Scholar
  131. Rao, J. S., Steck, P. A., Tofilon, P., Boyd, D., Ali-Osman, F., Stetler-Stevenson, W. G., Liotta, L. A., and Sawaya, R., 1993, Role of plasminogen activator and of 92-kDa type IV collagenase in glioblastoma invasion using an in vitro matrigel model, J. Neurooncol. 18: 129–138.Google Scholar
  132. Rao, J. S., Rayford, A., Yamamoto, M., Ang, K. K., Tofilon, P., and Sawaya, R., 1994, Modulation of fibrinolysis by ionizing radiation, J. Neurooncol. 22: 161–171.PubMedGoogle Scholar
  133. Remy, J., Wegrowski, J., Crechet, F., Martin, M., and Daburon, F., 1991, Long-term overproduction of collagen in radiation-induced fibrosis, Radiat. Res. 125: 14–19.PubMedGoogle Scholar
  134. Ronal, Z. A., and Weinstein, I. B., 1990, Identification of ultraviolet-inducible proteins that bind to a TGACAACA sequence in the polyoma virus regulatory region, Cancer Res. 50: 5374–5381.Google Scholar
  135. Ronal, Z. A., Okin, E., and Weinstein, I. B., 1988, Ultraviolet light induces expression of oncogenes in rat fibroblasts and human keratinocyte cells, Oncogene 2: 201–204.Google Scholar
  136. Ronal, Z. A., Lambert, M. E., and Weinstein, I. B., 1990, Inducible cellular responses to ultraviolet light irradiation and other mediators of DNA-damage in mammalian cells, Cell Biot . Toxicol. 6: 105–126.Google Scholar
  137. Ronai, Z. A., Rutberg, S., and Yang, Y. M., 1994, UV-response element (TGACAACA) from rat fibroblasts to human melanomas, Environ. Moi Mutagen. 23: 157–163Google Scholar
  138. Rosen, C. F., Gajic, D., and Drucker, D. J., 1990, UV radiation induction of ornithine decarboxylase in rat keratinocytes, Cancer Res. 50: 2631–2635Google Scholar
  139. Rotem, N., Axelrod, J. H., and Miskin, R., 1987, Induction of urokinase-type plasminogen activator by UV light in human fetal fibroblasts is mediated through a UV-induced secreted protein, Mol. Cell. Biol. 7: 622–631.PubMedGoogle Scholar
  140. Rozek, D., and Pfeifen, G. P., 1993, In vivo protein-DNA interactions at the c-jun promoter: Preformed complexes mediate the UV response, Moi Cell. Biol. 13: 5490–5499.Google Scholar
  141. Rutberg, S. E., Yang, Y. M., and Ronal, Z., 1992, Functional role of the ultraviolet light responsive element (URE: TGACAACA) in the transcription and replication of polyoma DNA, Nucleic Acids Res. 20: 4305–4310.PubMedGoogle Scholar
  142. Sahijdak, W. M., Yang, C.-R, Zuckerman, J. S., Meyers, M., and Boothman, D. A., 1994, Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation, Radiat. Res. 138: 47–51.Google Scholar
  143. Sakakeeny, M. A., Harrington, M., Leif, J., Merrill, W., Pratt, D., Romanik, E., McKenna, M., Fitzgerald, T. J., and Greenberger, J. S., 1994, Effects of gamma-irradiation on the M-CSF-promoter linked to a chloramphenicol acetyl transferase reporter gene expressed in a clonal murine bone marrow stromal cell line, Stem Cells 12: 87–94.PubMedGoogle Scholar
  144. Sakuma, S., Saya, H., Ijichi, A., and Tofilon, P. J., 1995, Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes, Radio and Res. 143: 1–7.Google Scholar
  145. Sawaya, R, Tofilon, P. J., Mohanam, S., Ali-Osman, F., Liotta, L. A., StetlerStevenson, W. G., and Rao, J. S., 1994, Induction of tissue-type plasminogen activator and 72-kDa type-IV collagenase by ionizing radiation in rat astrocytes, Int. J. Cancer 56: 214–218.PubMedGoogle Scholar
  146. Schmid, R. M., Perkins, N. D., Duckett, C. S., Andrews, P. C., and Nabel, G. J., 1991, Cloning of an NF-KB subunit which stimulates HIV transcription in synergy with p65, Nature 352: 733–736.PubMedGoogle Scholar
  147. Schorpp, M., Mallick, U., Rahmsdorf, H. J., and Herrlich, P., 1984, UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells, Cell 37: 861–868.PubMedGoogle Scholar
  148. Schreck, S., Rieber, P., and Baeuerle, P. A., 1991, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1, EMBO J. 10: 2247–2258.Google Scholar
  149. Schreck, S., Panozzo, J., Milton, J., Libertin, C. R., and Woloschak, G. E., 1995, The effects of multiple UV exposures on HIV-LTR expression, Photochem. PhotobioL 61: 378–382.PubMedGoogle Scholar
  150. Sellins, K. S., and Cohen, J. J., 1987, Gene induction by y-irradiation leads to DNA fragmentation in lymphocytes, J. ImmunoL 139: 3199–3206.PubMedGoogle Scholar
  151. Servomaa, K., and Rytömaa, T., 1990, UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn), Int. J. Radiat. Biol. 57: 331–343.PubMedGoogle Scholar
  152. Shadley, J. D., Afzal, V., and Wolff, S., 1987, Characterization of the adaptive response to ionizing radiation induced by low doses of X-rays to human lymphocytes, Radiat. Res. 111: 511–517.Google Scholar
  153. Sidjanin, D., Grdina, D., and Woloschak, G. E., 1996, UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells, Photochem. Photo-biol. 63: 79–85.Google Scholar
  154. Siebert, P. D., and Fukuda, M., 1985, Induction of cytoskeletal vimentin and actin gene expression by a tumor-promoting phorbol ester in the human leukemic cell line K562, J. Biol. Chem. 260: 3868–3874.PubMedGoogle Scholar
  155. Simon, M. M., Aragane, Y., Schwarz, A., Luger, T. A., and Schwarz, T., 1994, UVB light induces nuclear factor KB (NFKB) activity independently from chromosomal DNA damage in cell-free cytosolic extracts, J. Invest. Dermatol. 102: 422–427.PubMedGoogle Scholar
  156. Singh, S. P., and Lavin, M. F., 1989, DNA-binding protein activated by gamma radiation in human cells, MoL Cell. Biol. 10: 5279–5285.Google Scholar
  157. Stanley, S. K., Folks, T. M., and Fauci, A. S., 1989, Induction of expression of the human immunodeficiency virus in a chronically infected promonocytic cell line by ultraviolet irradiation, AIDS Res. Hum. Retrovir. 5: 375–384.PubMedGoogle Scholar
  158. Stein, B., Rahmsdorf, H. J., Schönthal, A., Bilscher, M., Ponta, H., and Herrlich, P., 1988, The UV induced signal transduction pathway to specific genes, in: Mechanisms and Consequences of DNA Damage Processing ( E. Friedberg and P. Hanawalt, eds.), Liss, New York, pp. 557–570.Google Scholar
  159. Stein, B., Kramer, M., Rahmsdorf, H. J., Ponta, H., and Herrlich, P., 1989a, UV-induced transcription from the HIV-1 LTR and UV-induced secretion of an extracellular factor that induces HIV-1 transcription in non-irradiated cells, J. Virol. 63: 4540–4544.PubMedGoogle Scholar
  160. Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., and Herrlich, P., 1989b, UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type I, collagenase, c-fos, and metallothionein, Mol. Cell. Biol. 9: 5169–5181.PubMedGoogle Scholar
  161. Stein, B., Angel, P., van Dam, H., Ponta, H., Herrlich, P., van der Eb, A., and Rahmsdorf, H. J., 1992, UV-induced c-jun gene transcription: Two AP-1 like binding sites acting additively mediate the response, Photochem. PhotobioL 55: 409–415.Google Scholar
  162. Sun, X., Shimizu, H., and Yamamoto, K., 1995, Identification of a novel p53 promoter element in genotoxic stress-inducible p53 gene expression, Mol. Cell. Biol. 8: 4489–4496.Google Scholar
  163. Uchiume, T., Kohno, K., Tanimura, H., Matsu, K., Sato, S., Uchida, Y., and Kuwano, M., 1993, Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation, Cell Growth Differ. 4: 147–157.Google Scholar
  164. Uckun, F. M., Tuel-Ahlgren, L. M., Song, C. W., Waddick, K., Myers, D. E., Kirihara, J., Ledbetter, J. A., and Schieven, G. L., 1992, Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death, Proc. Natl. Acad. Sci. USA 89: 9005–9009.PubMedGoogle Scholar
  165. Uckun, F. M., Schieven, G. L., Tuel-Ahlgren, L. M., Dibirdik, I., Myers, D. E., Ledbetter, J. A., and Song, C. W., 1993, Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors, Proc. Natl. Acad. Sci. USA 90: 252–256.PubMedGoogle Scholar
  166. Valerie, K., and Rosenberg, H., 1990, Chromatin structure implicated in activation of HIV-1 gene expression by ultraviolet light, New Biol. 2: 712–718.PubMedGoogle Scholar
  167. Valerie, K., Delers, A., Bruck, C., Thiriart, C., Rosenberg, H., Debouck, C., and Rosenberg, M., 1988, Activation of human immunodeficiency virus type I by DNA damage in human cells, Nature 333: 78–81.PubMedGoogle Scholar
  168. Vandenberg, S., Kaina, B., Rahmsdorf, H. J., Ponta, H., and Herrlich, P., 1991, Involvement of Fos in spontaneous and ultraviolet light-induced genetic changes, Mol. Carcinogen 4: 460–466.Google Scholar
  169. van der Schans, G. P., Paterson, M. C., and Gross, W. G., 1983, DNA strand break and rejoining in cultured human fibroblasts exposed to fast neutrons or gamma rays, Int. J. Radiat. Biol. 44: 75–85.Google Scholar
  170. Vanetti, M., 1988, Der unterschiedliche Beitrag der Motive in SV40 Enhancer zur Induktion mit UV Strahling, Diplomarbeit, Universitat Karlsruhe.Google Scholar
  171. Vrdoljak, E., Borchardt, P. E., Bill, C. A., Stephens, L. C., and Tofilon, P. J., 1994, Influence of x-rays on early response gene expression in rat astrocytes and brain tumor cell lines, Int. J. Radiat. Biol. 66: 739–746.PubMedGoogle Scholar
  172. Wade, M. H., and Trosko, J. E., 1983, Enhanced survival and decreased mutation frequency after photoreactivation of UV damage in rat kangaroo cells, Mutat. Res. 112: 231–243.Google Scholar
  173. Warner, H. R., and Price, A. R., 1989, Involvement of DNA repair in cancer and aging, J. GerontoL 44: 45–54.PubMedGoogle Scholar
  174. Weber, K. J., Schneider, E., Kiefer, J., and Kraft, G., 1990, Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis, Radiat. Res. 123: 61–67.PubMedGoogle Scholar
  175. Weichselbaum, R. R, Hallahan, D., Fuks, Z., and Kufe, D., 1994, Radiation induction of immediate early genes: Effectors of the radiation-stress response, Int. J. Radiat. Oncol. Biol. Phys. 30: 229–234.Google Scholar
  176. Woloschak G. E., and Chang-Liu, C.-M., 1990, Differential modulation of specific gene expression following high-and low-LET radiations, Radiat. Res. 124: 183–187.PubMedGoogle Scholar
  177. Woloschak G. E., and Chang-Liu, C.-M., 1991, Expression of cytoskeletal elements in proliferating cells following radiation exposure, Int. J. Radiat. Biol. 59: 1173–1183.PubMedGoogle Scholar
  178. Woloschak, G. E., and Chang-Liu, C.-M., 1992, Effects of low-dose radiation on gene expression in Syrian hamster embryo cells: Comparison of JANUS neutrons and gamma rays, in: Low Dose Irradiation and Biological Defense Mechanisms ( T. Sugahara, L. A. Sagan, and T. Aoyama, eds.), Elsevier, Amsterdam, pp. 239–242.Google Scholar
  179. Woloschak, G. E., and Chang-Liu, C.-M., 1995, Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or -y-rays, Cancer Lett. 97:169–175.Google Scholar
  180. Woloschak, G. E., Liu, C.-M., and Shearin-Jones, P., 1990a, Regulation of protein kinase C by ionizing radiation, Cancer Res. 50: 3963–3967.PubMedGoogle Scholar
  181. Woloschak, G. E., Liu, C.-M., Jones, P. S., and Jones, C. A., 1990b, Modulation of gene expression in Syrian hamster embryo cells following ionizing radiation, Cancer Res. 50: 339–344.PubMedGoogle Scholar
  182. Woloschak, G E., Shearin-Jones, P., and Chang-Liu, C.-M., 1990c, Effects of ionizing radiation on expression of genes encoding cytoskeletal elements: Kinetics and dose effects, MoL Carcinogen. 3: 374–378.Google Scholar
  183. Woloschak, G. E., Churchill, M. E., and Libertin, C. R, 1991, Immunological disorders characterizing the “wasted” mouse: A review, Immunol. (Life Sci. Adv.) 10: 95–104.Google Scholar
  184. Woloschak, G. E., Chang-Liu, C.-M., Panozzo, J., and Libertin, C. R, 1994, Low doses of neutrons induce changes in gene expression, Radiat. Res. 138: S56 - S59.PubMedGoogle Scholar
  185. Woloschak, G. E., Paunesku, T., Chang-Liu, C.-M., and Grdina, D. J., 1995a, Expression of thymidine kinase messenger RNA and a related transcript is modulated by radioprotector WR1065, Cancer Res. 55: 4788–4792.PubMedGoogle Scholar
  186. Woloschak, G. E., Felcher, P., and Chang-Liu, C.-M. 1995b, Combined effects of ionizing radiation and cycloheximide on gene expression, Mol. Carcinogen. 13: 44–49.Google Scholar
  187. Woloschak, G. E., Felcher, P., and Chang-Liu, C.-M., 1995c, Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements, Cancer Lett. 92: 135–141.PubMedGoogle Scholar
  188. Woloschak, G. E., Panozzo, J., Schreck, S., and Libertin, C. R., 1995d, Salicylic acid inhibits ultraviolet-and cis-platinum-induced human immunodeficiency virus expression, Cancer Res. 55: 1696–1700.Google Scholar
  189. Woloschak, G. E., Chang-Liu, C.-M., Chung, J., and Libertin, C. R, 1996, Expression of enhanced spontaneous and y-ray-induced apoptosis by lymphocytes of the wasted mouse, Int. J. Radiat. Biol. 69: 47–55.Google Scholar
  190. Yang, Y. M., Rutberg, S. E., Folles, P. G., and Ronal, Z., 1993, Expression patterns of proteins that bind to the ultraviolet-response elements (TGACAACA) in human keratinocytes, MoL Carcinogen. 7: 36–43.Google Scholar
  191. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimichi, A., and Oren, M., 1991, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature 352: 345–347.PubMedGoogle Scholar
  192. Zhan, O., Lord, K. A., Alamo, I., Jr., Hollander, M. C., Carrier, F., Ron, D., Kohn, K. W., Hoffman, B., Liebermann, D. A., and Fornace, A. J., Jr., 1994, The gadri and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth, MoL Cell Biol. 14: 2361–2371.PubMedGoogle Scholar
  193. Zmudzka, B., and Beer, J. Z., 1990, Yearly review: Activation of human immuno- deficiency virus by UV radiation, Photochem. Photobiol. 52: 1153–1162.PubMedGoogle Scholar
  194. Zubiaga, A. M., Münoz, E., and Huber, B., 1992, IL-4 and IL-2 selectively rescue T cell subsets from glucocorticoid-induced apoptosis, J. Immuno L 146: 3857–3863.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gayle E. Woloschak
    • 1
  1. 1.Center for Mechanistic Biology and BiotechnologyArgonne National LaboratoryArgonneUSA

Personalised recommendations