Correlation between Absolute Deoxyhaemoglobin [dHb] Measured by Near Infrared Spectroscopy (NIRS) and Absolute R2′ as Determined by Magnetic Resonance Imaging (MRI)

  • S. Punwani
  • C. E. Cooper
  • M. Clemence
  • J. Penrice
  • P. Amess
  • J. Thornton
  • R. J. Ordidge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)

Abstract

Magnetic Resonance Imaging (MRI) is a technique which provides high spatial resolution combined with a wide range of image contrast mechanisms. Standard MR image contrast relies upon tissue differences in MR visible hydrogen spin density, spin-lattice (T1) relaxation and spin-spin (T2) relaxation. In soft tissue, the variation of MR visible hydrogen spin density between tissues types is small (up to 30%) whereas T1 and T2 relaxation times can vary considerably (>100%). However, despite this sensitivity, these standard forms of contrast mainly reflect the longer term disruption of tissue structure. Since alterations in tissue function normally precede structural damage, MR image contrast which accurately reflects this tissue function holds the promise of earlier detection of pathophysiology.

Keywords

Cerebral Blood Volume Blood Oxygenation Level Dependant Blood Volume Change United Kingdom Introduction Image Matrix Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ordidge, R. J., Gorell, J.M., Deniau, J. C, Knight, R. A., and Helpern, J. A., 1994, Assessment of Relative Brain Iron Concentrations Using T2-Weigted and T2 *-Weighted MRI at 3 Tesla, Magn. Resort. Med., 32:335–341.CrossRefGoogle Scholar
  2. 2.
    Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G. Merkle, H., Ellermann, J. M., and Ugurbil, K., 1993, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging, Biophys. J., 64:803–812.CrossRefGoogle Scholar
  3. 3.
    Jezzard, P., Heineman, F., Taylor, J., DesPres, D., Wen, H., Balaban, R. S., and Turner, R., 1994, Comparison of EPI Gradient-Echo Contrast Changes in Cat Brain Caused By Respiratory Challenges with Direct Simultaneous Evaluation of Cerebral Oxygenation via a Cranial Window, NMR Biomed., 7:35–44.CrossRefGoogle Scholar
  4. 4.
    Wyatt, J. S., Cope, M., Delpy, D. T., Edwards, A. D., Wray, S. C., and Reynolds, E. O. R., 1986, Quatification of cerebral oxygenation and hemodynamics in sick newborn infants by near infra red spectrophotometry, Lancet, II:1063–1066.CrossRefGoogle Scholar
  5. 5.
    Matcher, S. J., Cope, M., Delpy, D.T., 1994, Use of water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy, Phys. Med. Biol., 39:177–196.CrossRefGoogle Scholar
  6. 6.
    Matcher, S. J., and Cooper, C. E., 1994, Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy. Phys. Med. Biol., 39:1295–1312.CrossRefGoogle Scholar
  7. 7.
    Cooper, C. E., Elwell, C. E., Meek, H., Matcher, S. J., Wyatt, J. S., Cope, M., and Delpy, D. T., 1995, The non-invasive measurement of absolute cerebral deoxyhaemoglobin concentration and mean optical path-length in the neonatal brain by second derivative near infrared spectroscopy, Pediatr. Res., In press.Google Scholar
  8. 8.
    Lorek, A., Takei, Y., Cady, E. B., Wyatt, J. S., Penrice, J., Edwards, A. D., Peebles, D., Wylenzinska, M., Owen-Reece, H., Kirkbride, V, Cooper, C. E., Aldridge, R. F., Roth, S. C, Brown, G., Delpy, D. T., and Reynolds, E. O. R., 1994, Delayed („Secondary“) Cerebral Energy Failure after Acute Hypoxia-Ischaemia in the Newborn Piglet: Continuous 48-Hour Studies by Phosphorus Magnetic Resonance Spectroscopy, Pediatr. Res., 36(6).Google Scholar
  9. 9.
    Yablonskiy, D. A., and Haacke, E. M., 1994, Theory of NMR Signal Behavior in Magnetically Inhomogeneous Tissues: The Static Dephasing Regime, Magn. Reson. Med., 32:749–763.CrossRefGoogle Scholar
  10. 10.
    Roth, S. C., Edwards, A. D., Cady, E.B., Delpy, D. T., Wyatt, J. S., Azzopardi, D., Baudin, J., Townsend, J., Stewart, A. L., and Reynolds, E. O., 1992, Relation between cerebral oxidative metabolism following birth aspyxia and neurodevelopmental outcome and brain growth at one year, Dev. Med. Child Neurol., 34:285–295.CrossRefGoogle Scholar
  11. 11.
    Cope, M., Delpy, D. T., Wyatt, J. S., Wray, S. C, Reynolds, E. O. R., 1989, A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the water absorption peak of water at 975 mm, Adv. Exp. Med. Biol., 247:33–31.CrossRefGoogle Scholar
  12. 12.
    Essenpreis, M., Elwell, C. E., P. van der Zee, Arridge, S. R., and Delpy, D. T., 1993, Spectral dependance of temporal point spread functions in human tissues, Applied Optics, 32:418–425.ADSCrossRefGoogle Scholar
  13. 13.
    Schenk, J. F., 1992, Health and physiological effects of human exposure to whole body four tesla magnetic fields during MRI., Ann. N. Y. Acad. Sci., 649:285–301.ADSCrossRefGoogle Scholar
  14. 14.
    Hanjal, J. V., De coene, B., Lewis, P. D., Baudouin, C. J., Cowan, F. M., Pennrock, J. M., Young, I. R., Bydder, G., 1992, High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences, J Comput. Assist. Tomogr., 16(4):506–513.CrossRefGoogle Scholar
  15. 15.
    Matcher, S. J., Elwell, C. E., Cooper, C. E., Cope, M., and Delpy, D. T., 1995, Performance Comparison of Several Published Tissue Near-Infrared Spectroscopy Algorithms, Analyt. Biochem., 277, 54–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. Punwani
    • 1
  • C. E. Cooper
    • 2
  • M. Clemence
    • 1
  • J. Penrice
  • P. Amess
    • 2
  • J. Thornton
    • 2
  • R. J. Ordidge
    • 1
  1. 1.Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
  2. 2.Department of PaediatricsUniversity College LondonLondonUK

Personalised recommendations