T-Cell Derived Mechanisms in the Pathogenesis of Myasthenia Gravis

  • Ann Kari Lefvert

Abstract

Myasthenia gravis (MG) is often described as the prototype of an auto antibody-mediated autoimmune disease. The autoantibodies are directed against the nicotinic acetylcholine receptor on the skeletal muscle endplate, the disease is transmitted from mother to child and from humans to animals, and immunisation with acetylcholine receptor induces experimental myasthenia gravis in animals.1 The disease-specific autoantibodies are, however, found in conditions not accompanied by neuromuscular symptoms, as in healthy first-degree relatives to patients, in monoclonal gammopathies, in primary biliary cirrhosis and in thymomas. Despite extensive efforts to try to distinguish the disease-causing antibodies found in myasthenia with those found in other conditions, no clear difference between these antibodies has been found. These observations together with the rather bad correlation between the concentration of autoantibodies in serum and the clinical symptoms suggest that mechanisms other than these antibodies may contribute by modulating the effects of autoantibodies on the neuromuscular junction.

Keywords

Primary Biliary Cirrhosis Acetylcholine Receptor Receptor Antibody Thymic Epithelial Cell Idiotypic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lefvert AK. Human and experimental myasthenia gravis. In: Coutinho A, Kazatchine M, Wiley-Liss, Inc. Eds. Autoimmunity: Physiology and Disease. New York 1994; 267-305.Google Scholar
  2. 2.
    Åhlberg RE, Pirkanen R, Lefvert AK. Defective T lymphocyte function in nonthymectomized patients with myasthenia gravis. Clin. Immunol. Immunopathol. 1991; 60:93–105.PubMedCrossRefGoogle Scholar
  3. 3.
    Dropcho EJ, Richman DP, Antel J, Arnason BGW. Defective mitogenic responses in myasthenia gravis and multiple sclerosis. Ann. Neurol. 1982; 11:456–462.PubMedCrossRefGoogle Scholar
  4. 4.
    Zilko PJ, Dawkins RL, Holmes K, Witt C. Genetic control of suppressor lymphocyte function in myasthenia gravis: Relationship of impaired suppressor function to HLA-B8/DRW3 and cold reactive lymphocytotoxic antibodies. Clin. Immunol. Immunopathol. 1979; 14:222–230.PubMedCrossRefGoogle Scholar
  5. 5.
    Mischak RP, Dau PC, Gonzales RL, Spitler LE. In vitro testing of suppressor cell activity in myasthenia gravis. In: Dau PC, Ed. Plasmapheresis and the Immunobiology of myasthenia gravis. Houghton, Boston, 1979.Google Scholar
  6. 6.
    Hohlfeld R, Kalies I, Kohleisen B, Heininger K, Conti-Tronconi BM, Toyka KV. Myasthenia gravis: Stimulation of antireceptor autoantibodies by autoreactive T cell lines. Neurology 1986; 36:618–621.PubMedCrossRefGoogle Scholar
  7. 7.
    Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor a subunit. Proc. Natl. Acad. Sci. USA 1987; 84:5379–5383.PubMedCrossRefGoogle Scholar
  8. 8.
    Hohlfeld R, Toyka KV, Miner LL, Walgrave SL, Conti-Tronconi BM. Amphipatic segment of the nicotinic receptor alpha subunit contains epitopes recognized by T lymphocytes in myasthenia gravis. J. Clin. Invest. 1988; 81:657–660.PubMedCrossRefGoogle Scholar
  9. 9.
    Åhlberg R, Yi Q, Eng H, Pirskanen R, Lefvert AK. T-cell epitopes on the human acetylcholine receptor α-subunit residues 10–84 in myasthenia gravis. Scand. J. Immunol. 1992; 36:435–442.PubMedCrossRefGoogle Scholar
  10. 10.
    Yi Q, Pirskanen R, Lefvert AK. Human muscle acetylcholine receptor reactive T and B lymphocytes in the peripheral blood of patients with myasthenia gravis. J. Neuroimmunol 1993; 42:215–222.PubMedCrossRefGoogle Scholar
  11. 11.
    Yi Q, Åhlberg R, Pirskanen R, Lefvert AK. Acetylcholine receptor-reactive T cells in myasthenia gravis: Evidence for the involvement of different subpopulations of T helper cells. J. Neuroimmunol. 1994; 50:177–186.PubMedCrossRefGoogle Scholar
  12. 12.
    Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol. Today 1991; 12:256–257.PubMedCrossRefGoogle Scholar
  13. 13.
    Del Prete GF, De Carli M, Mastromauro C, etals. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J. Clin. Invest. 1991; 88: 346–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Del Prete GF, De Carli M, Ricci M, Romagnani S. Helper activity for immunoglobulin synthesis of T helper type 1 (Thl) and Th2 human T cell clones: the help of Thl clones is limited by their cytolytic capacity. J. Exp. Med 1991; 174:809–813.PubMedCrossRefGoogle Scholar
  15. 15.
    Yi Q, Ahlberg R, Pirskanen R, Lefvert AK. Acetylcholine receptor-reactive T cells in myasthenia gravis: Evidence for the involvement of different subpopulations of T helper cells. J. Neuroimmunol. 1994; 50:177–186.PubMedCrossRefGoogle Scholar
  16. 16.
    Lefvert Ak, Sunden H, Holm G. Acetylcholine receptor antibodies and anti-idiotypic antibodies produced in blood lymphocyte cultures from patients with myasthenia gravis. Scand. J. Immunol. 1986; 23:655–662.PubMedCrossRefGoogle Scholar
  17. 17.
    Lefvert AK. Idiotypes and anti-idiotypes of human autoantibodies to the acetylcholine receptor. In: Karger S, Ed. Monographs in allergy. Basel 1987; 22: 57-70.Google Scholar
  18. 18.
    Lefvert AK. The start of an autoimmune process: idiotypic networks during the development of myasthenia gravis. Ann. Inst. Pasteur 1988; 139:633–643.CrossRefGoogle Scholar
  19. 19.
    Lefvert AK. Anti-idiotype antibodies in myasthenia gravis. In: Bona C, Ed. Biological applications of antiidiotypes. CRC Press Inc, Boca Raton, Fl. 1988; Vol IIC: 69-91.Google Scholar
  20. 20.
    Yi Q, Åhlberg R, Lefvert AK. T cells with specificity for idiotypic determinants on human monoclonal autoantibodies in myasthenia gravis. Res. immunol. 1992; 143:149–156.PubMedCrossRefGoogle Scholar
  21. 21.
    Yi Q, Lefvert AK. Idiotypic and anti-idiotypic T and B lymphocytes in myasthenia gravis. J. Immunol. 1992; 149:3423–3426.PubMedGoogle Scholar
  22. 22.
    Yi Q, Lefvert AK. Idiotype-and anti-idiotype-reactive T lymphocytes in myasthenia gravis: Evidence for the involvement of different subpopulations of T helper lymphocytes. J. Immunol. 1994; 153:3353–3359.PubMedGoogle Scholar
  23. 23.
    Lefvert AK, Holm G. Idiotypic network in myasthenia gravis demonstrated by human monoclonal B-cell lines. Scand. J. Immunol. 1987; 26:573.PubMedCrossRefGoogle Scholar
  24. 24.
    Eng H, Magnusson Y, Matell G, Lefvert AK, Saponja R, Hoebeke J. β2-adrenergic receptor antibodies in myasthenia gravis. J. Autoimmunity 1992; 5:213–227.CrossRefGoogle Scholar
  25. 25.
    Yi Q, He W, Matell G, Pirskanen R, Magnusson Y, Eng H, Lefvert AK. T and B lymphocytes reacting with the extracellular loop of the β2-adrenergic receptor (β2AR) are present in the peripheral blood of patients with myasthenia gravis. Clin. Exp. Immunol. 1996; 103:133–140.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer SE, Stull JT. Cyclic AMP in skeletal muscle. Ann. NY Acad.Sci. 1971; 185:433–448.CrossRefGoogle Scholar
  27. 27.
    Elfellah MS, Reid JL. The role of skeletal muscle β-adrenoreceptors in the regulation of plasma potassium. J. Auton. Pharmac. 1987; 7:175–184.CrossRefGoogle Scholar
  28. 28.
    Marooned CD, Meadow JC. The effect of adrenaline on the contraction of human muscle. J. Physiol. 1970; 207:429–448.Google Scholar
  29. 29.
    Sjogaard G. Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Acta Physiol. Scand. 1986; 128:129–136.CrossRefGoogle Scholar
  30. 30.
    Cross RJ, Jackson JC, Brooks WH, Sparks DL, Markesbery WR, Roszman TL. Neuroimmunomodulation: impairment of humoral immune responsiveness by 6-hydroxydopamine treatment. Immunology 1986; 57:145–152.PubMedGoogle Scholar
  31. 31.
    Depelchin A, Letesson JJ. Adrenaline influence on the immune response II. its effects through action on the suppressor T cells. Immunol. Lett. 1981; 3:207–213.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu C-Z, Link H, Mo X-A, etal. Anti-presynaptic membrane receptor antibodies in myasthenia gravis. J. Neurol. Sci. 1991; 102: 39–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Yi Q, Pirskanen R, Lefvert AK. Presynaptic membrane receptor-reactive T lymphocytes in myasthenia gravis. Scand J Immunol. 1996; 43:81–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Grunewald J, Åhlberg R, Lefvert AK, DerSimonian H, Wigzell H, Jansson CH. Abnormal T cell expansion and V gene usage in myasthenia gravis patients. Scand.J.Immunol 1991; 34:161–168.PubMedCrossRefGoogle Scholar
  35. 35.
    Castleman B. The pathology of the thymus gland in myasthenia gravis. Ann. NY Acad. Sci. 1966; 135:496–503.PubMedCrossRefGoogle Scholar
  36. 36.
    Engel WK, Trotter JL, McFarlin DE, McIntosh CL. Thymic epithelial cell contains acetylcholine receptor. Lancet 1977;1:1310–1311.PubMedCrossRefGoogle Scholar
  37. 37.
    Kirchner T, Tzartos S, Hoppe F, Schalke B, Wekerle H, Müller-Hermelink HK. Pathogenesis of myasthenia gravis: Acetylcholine receptor-related antigenic determinants in tumor-free thymuses and thymic epithelial tumors. Am. J. Pathol. 1988; 130:268–280.PubMedGoogle Scholar
  38. 38.
    Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor antibody by thymic lymphocytes in myasthenia gravis. Lancet 1978; 1:305–307.PubMedCrossRefGoogle Scholar
  39. 39.
    Melms A, Schalke BCG, Kirchner T, Müller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis: Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenie patients. J. Clin. Invest. 1988; 81:902–908.CrossRefGoogle Scholar
  40. 40.
    Papatestas AE, Genkins G, Kornfeld P, etal. Effects of thymectomy in myasthenia gravis. Ann. Surg. 1987; 206: 79–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Åhlberg R, Yi Q, Pirskanen R, etal. The effect of thymectomy on autoreactiv T-and B-lymphocytes in myasthenia gravis. SubmittedGoogle Scholar
  42. 42.
    Åhlberg R, Yi Q, Pirskanen R, etal. Treatment of myasthenia gravis with anti-CD4 antibody: Improvement correlates to decreased T-cell autoreactivity. Neurology 1994; 44: 1732–1737.PubMedCrossRefGoogle Scholar
  43. 43.
    Herzog C, Walker C, Müller W, etal. Anti-CD4 antibody treatment of patients with rheumatoid arthritis: 1. Effect on clinical course and circulating T cells. J. Autoimmun. 1989; 2:627–642.PubMedCrossRefGoogle Scholar
  44. 44.
    Hiepe F, Volk H-D, Apostoloff E, von Baehr R, Emmrich F. Treatment of severe systemic lupus erythematosus with anti-CD4 monoclonal antibody. Lancet 1991; 338:1529–1530.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ann Kari Lefvert
    • 1
  1. 1.Department of Medicine and Immunological Research LaboratoryKarolinska InstituteStockholmSweden

Personalised recommendations