Nonlinearly Interacting Gravitational Waves in the Gowdy T3 Cosmology

  • B. K. Berger
  • D. Garfinkle
  • V. Moncrief
  • C. M. Swift
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

Nonlinear interactions between the two polarizations of the gravitational waves in the Gowdy T3 cosmology cause the generation of small-scale spatial structure from smooth initial data as the singularity is approached. The growth of this structure competes with the freezing of the spatial profile characteristic of the velocity dominated approach to the singularity conjectured for these models. Some properties of this phenomenon will be discussed.

Keywords

Wave Equation Gravitational Wave Spatial Profile Smooth Initial Data Spatial Grid Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., 1970, Adv. Phys., 19, 525.ADSCrossRefGoogle Scholar
  2. [2]
    Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., 1982, Adv. Phys., 31, 639.ADSCrossRefGoogle Scholar
  3. [3]
    Berger, B.K., 1974, Ann. Phys. (N.Y.), 83, 458.ADSCrossRefGoogle Scholar
  4. [4]
    Berger, B.K. and Moncrief, V., 1993, Phys. Rev. D, in press.Google Scholar
  5. [5]
    Eardley, D., Liang, E., and Sachs, R., 1972, J. Math. Phys., 13, 99.ADSCrossRefGoogle Scholar
  6. [6]
    Garfinkle, D., 1993, unpublished.Google Scholar
  7. [7]
    Gowdy, R.H., 1971, Phys. Rev. Lett., 27, 826, erratum 1102.ADSGoogle Scholar
  8. [8]
    Gowdy, R.H., 1974, Ann. Phys. (N.Y.), 83, 203.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    Grubišić, B. and Moncrief, V., 1993a, Phys. Rev. D, 47, 2371.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Grubišić, B. and Moncrief, V., 1993b, unpublished.Google Scholar
  11. [11]
    Hawking, S.W., 1967, Proc. Roy. Soc. Lond. A, 300, 187.ADSMATHCrossRefGoogle Scholar
  12. [12]
    Hawking, S.W. and Penrose, R., 1970, Proc. Roy. Soc. Lond. A, 314, 529.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    Isenberg, J. and Moncrief, V., 1990, Ann. Phys. (N.Y.), 199, 84.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    Misner, C.W., 1969, Phys. Rev. Lett. 22, 1071.ADSMATHCrossRefGoogle Scholar
  15. [15]
    Moncrief, V., 1981, Ann. Phys. (N.Y.), 132, 87.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Penrose, R., 1965, Phys. Rev. Lett., 14, 57.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    Suen, W.M. and Tobias, M., 1993, Workshop on Numerical Relativity, Penn State.Google Scholar
  18. [18]
    Swift, C.M., 1993 “Numerical Studies of the Gowdy T3 Spacetime,” Masters Thesis, Oakland University.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • B. K. Berger
    • 1
    • 3
  • D. Garfinkle
    • 1
    • 3
  • V. Moncrief
    • 2
    • 3
  • C. M. Swift
    • 1
  1. 1.Physics DepartmentOakland UniversityRochesterUSA
  2. 2.Physics DepartmentYale UniversityNew HavenUSA
  3. 3.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations