Recent Developments in Kohn-Sham Theory for Orbital-Dependent Exchange-Correlation Energy Functionals

  • Joseph B. Krieger
  • Yan Li
  • Gerald J. Iafrate
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

In the usual spin density Kohn-Sham[1,2] (KS) theory, the total ground state energy, E, of a system of electrons moving in an external potential, V(r), is the sum of the kinetic energy of non-interacting electrons with the same spin densities, nσ, the average energy due to the external potential, the Hartree energy, and the exchange-correlation energy, Exc, which is a universal functional of {nσ}. The KS single particle states, φ, are obtained by solving a system of Schrodinger-like equations in which the effective potential is the sum of V(r), the Hartree potential, and the exchange-correlation potential, which is the functional derivative of Exc with respect to the nσ(r). This procedure is in principle exact. However, one must make some approximations for the generally unknown Exc[{nσ}] in applying this method.

Keywords

Spin Density Exchange Potential Local Spin Density Approximation Generalize Gradient Approximation Optimize Effective Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    U. von Barth and L. Hedin, J. Phys. C. 5, 1629 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    A. D. Becke, Phys. Rev. A. 38, 3098 (1988).ADSCrossRefGoogle Scholar
  4. [4]
    E. Engel and S.H. Vosko, Phys. Rev. A. 47, 2800 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    J.P. Perdew and A. Zunger, Phys. Rev. B. 23, 5048 (1981).ADSCrossRefGoogle Scholar
  6. [6]
    J.P. Perdew and M. Levy, in Many-Body Phenomena at Surfaces, edited by D.C. Langreth and H. Suhl (Academic, New York, 1984).Google Scholar
  7. [7]
    J.P. Perdew, R.G. Parr, M. Levy and J.L. Balduz, Jr., Phys. Rev. Lett. 49, 1691 (1982).ADSCrossRefGoogle Scholar
  8. [8]
    J.P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).ADSCrossRefGoogle Scholar
  9. [9]
    L.J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).ADSCrossRefGoogle Scholar
  10. [10]
    J.P. Perdew, in Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia (Plenum, New York, 1985).Google Scholar
  11. [11]
    J.P. Perdew, in Advances in Quantum Chemistry, Vol. 21, edited by S.B. Trickey (Academic Press, San Diego 1990).Google Scholar
  12. [12]
    W. Kohn, in Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia (Plenum, New York, 1985).Google Scholar
  13. [13]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M.R. Norman and D.D. Koelling, Phys. Rev. B. 30, 5530 (1984).ADSCrossRefGoogle Scholar
  15. [15]
    J.D. Talman and W. F. Shadwick, Phys. Rev. A. 14, 36 (1976).ADSCrossRefGoogle Scholar
  16. [16]
    K. Aashamar, T.M. Luke and J.D. Talman, At. Data Nucl. Data Tables. 22, 443 (1978).ADSCrossRefGoogle Scholar
  17. [17]
    Y. Wang, J.P. Perdew, J.A. Chevary, L.D. Mcdonald, and S.H. Vosko, Phys. Rev. A. 41, 78 (1990).ADSCrossRefGoogle Scholar
  18. [18]
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Lett. A. 148, 470 (1990).ADSCrossRefGoogle Scholar
  19. [19]
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Rev. A. 45, 101 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Rev. A. 46, 5453 (1992).ADSCrossRefGoogle Scholar
  21. [21]
    J.B. Krieger, Y. Li and G.J. Iafrate (submitted for publication).Google Scholar
  22. [22]
    J.F. Janak, Phys. Rev. B. 18, 7165 (1978).ADSCrossRefGoogle Scholar
  23. [23]
    T. Koopmans, Physica. 1, 104 (1933).ADSMATHCrossRefGoogle Scholar
  24. [24]
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Lett. A. 146, 256 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    J.B. Krieger, Y. Li and G.J. Iafrate, Int. J. Quantum Chem. 41, 489 (1992).CrossRefGoogle Scholar
  26. [26]
    Y. Li, J.B. Krieger and G.J. Iafrate, Chem. Phys. Lett. 191, 38 (1992).ADSCrossRefGoogle Scholar
  27. [27]
    Y. Li, J.B. Krieger and G.J. Iafrate, Phys. Rev. A. 47, 165 (1993).ADSCrossRefGoogle Scholar
  28. [28]
    R.T. Sharp and G.K. Horton, Phys. Rev. 30, 317 (1953).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.C. Slater, Phys. Rev. 81, 385 (1951).ADSMATHCrossRefGoogle Scholar
  30. [30]
    Y. Li, J.B. Krieger, J.A. Chevary and S.H. Vosko, Phys. Rev. A. 43, 5121 (1991).ADSCrossRefGoogle Scholar
  31. [31]
    M. Levy and J.P. Perdew, Phys. Rev. A. 32, 2010 (1985).ADSCrossRefGoogle Scholar
  32. [32]
    K. Schwarz, Phys. Rev. B. 5, 2466 (1972).ADSCrossRefGoogle Scholar
  33. [33]
    J.B. Krieger, Y. Li and G.J. Iafrate, Bull. Am. Phys. Soc. 37, 81 (1992).Google Scholar
  34. [34]
    Y. Li, J.B. Krieger, M.R. Norman and G.J. Iafrate, Phys. Rev. B 44, 10, 437 (1991).Google Scholar
  35. [35]
    R. Colle and O. Salvetti, Theor. Chim Acta. 37, 329 (1975).CrossRefGoogle Scholar
  36. [36]
    J.B. Krieger, Y. Li and G.J. Iafrate, Bull. Am. Phys. Soc, March 1994 (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joseph B. Krieger
    • 1
    • 2
  • Yan Li
    • 1
    • 2
  • Gerald J. Iafrate
    • 3
  1. 1.Graduate School and University CenterCity University of New YorkBrooklynUSA
  2. 2.Physics DepartmentBrooklyn College, C.U.N.Y.BrooklynUSA
  3. 3.U.S. Army Research OfficeResearch Triangle ParkUSA

Personalised recommendations