Excited States and Electron-Atom Scattering

  • L. Fritsche
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

As has become evident from a vast variety of applications, the Kohn Sham-version [1] of density functional (DF-)theory [2] constitutes the most successful many-electron theory for the calculation of electronic ground state properties. The considerable practical virtue of this scheme resides in the fact that it maps the N-electron problem onto a one-particle problem which consists in self-consistently solving N one-particle equations with a strictly local, energy-independent and real-valued potential. The term “local” in that context refers to the property of this potential that it appears as a factor in front of the sought-for solution ψ i (x) as in a Schrödinger equation that describes a true one-particle problem. (Here x stands, collectively, for the real-space coordinate r and the spin variable s of some electron.) The N lowest lying solutions can be used to calculate the total kinetic energy of the system and the charge density ρ(r) which turns out to be expressible as the sum of the square moduli of those N solutions. If, in addition, the exchange-correlation energy per particle, ε xc (r), is approximated by one of the more recent local expressions with gradient corrections [3, 4, 5], one can calculate the total energies of atoms, molecules and solids to an accuracy that appeared to be inconceivable 20 years ago. The foundation of this theoretical framework seemed to suggest that its extension to stationary electronic excitations is impossible. Nevertheless, many naïve applications of the Kohn-Sham scheme to non-ground state situations proved to be surprisingly successful. The objective of the present contribution is to show that the Kohn-Sham theory can be rederived in a form that applies, in fact, to ground states as well as to excited states.

Keywords

Local Density Approximation SchrOdinger Equation Induce Polarization Slater Determinant Ground State Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986).ADSCrossRefGoogle Scholar
  4. J.P. Perdew, Phys. Rev. B 34, 7406 (1986) (E).ADSCrossRefGoogle Scholar
  5. 4.
    J.P. Perdew and Y. Wang, Phys. Rev. B. 33, 8800 (1986).ADSCrossRefGoogle Scholar
  6. 5.
    A.D. Becke, Phys. Rev. B. 38, 3098 (1988).ADSGoogle Scholar
  7. 6.
    L. Hedin, Phys. Rev. 139, A 796 (1965).ADSCrossRefGoogle Scholar
  8. 7.
    L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1969).CrossRefGoogle Scholar
  9. 8.
    J.E. Inglesfield, Molecular Physics. 37, 873 (1979).ADSCrossRefGoogle Scholar
  10. 9.
    L. Hedin, Nuclear Instruments and Methods in Physics Research A. 308, 169 (1991).ADSCrossRefGoogle Scholar
  11. 10.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).ADSCrossRefGoogle Scholar
  12. M.S. Hybertsen and S.G. Louie, Phys.Rev.Lett. 55, 1418 (1985).ADSCrossRefGoogle Scholar
  13. 11.
    F. Bechstedt in: “Festkörperprobleme / Advances in Solid State Physics”, Vol.32, U. Rössler, ed., Vieweg, Braunschweig (1992).Google Scholar
  14. 12.
    G. Strinati, H.J. Mattausch and W. Hanke, Phys.Rev.Lett. 45, 290 (1980).ADSCrossRefGoogle Scholar
  15. G. Strinati, H.J. Mattausch and W. Hanke, Phys. Rev.B. 25, 2867 (1982).ADSCrossRefGoogle Scholar
  16. 13.
    H. Eschrig, K.A. Kikoin and V.G. Kohn, Solid State Commun. 56, 773 (1985).ADSCrossRefGoogle Scholar
  17. 14.
    N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Holt, Rinehart and Winston, New York (1976), p. 330.Google Scholar
  18. 15.
    F. Manghi, G. Riegler, C.M. Bertoni, C. Calandra and G.B. Bachelet, Phys. Rev. B 28, 6157 (1983).ADSCrossRefGoogle Scholar
  19. 16.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. B. 30, 5777 (1984).ADSCrossRefGoogle Scholar
  20. 17.
    P. Krueger, G. Wolfengarten and J. Pollmann, Solid State Commun. 53 885 (1985).ADSCrossRefGoogle Scholar
  21. 18.
    Y.T. Shen, D.M. Bylander and L. Kleinman, Phys. Rev. B. 36, 3465 (1987).ADSCrossRefGoogle Scholar
  22. 19.
    R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986).ADSCrossRefGoogle Scholar
  23. R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev.B. 35, 4170 (1987).ADSCrossRefGoogle Scholar
  24. 20.
    L. Fritsche and Y.M. Gu, Phys. Rev. B. 48, 4250 (1993).ADSCrossRefGoogle Scholar
  25. 21.
    J.F. Janak, Phys. Rev. B. 18, 7165 (1978).ADSCrossRefGoogle Scholar
  26. 22.
    J. Cordes and L. Fritsche, Z. Phys. D. 13, 345 (1989).ADSCrossRefGoogle Scholar
  27. 23.
    L. Fritsche, Physica B. 172, 7 (1991).ADSCrossRefGoogle Scholar
  28. 24.
    L. Fritsche, C. Kroner and T. Reinert, J. Phys. B: At. Mol. Opt. Phys. 25, 4287 (1992).ADSCrossRefGoogle Scholar
  29. 25.
    L. Fritsche, Int. J. Quantum Chem. 48, 185 (1993).CrossRefGoogle Scholar
  30. L. Fritsche, Int. J. Quantum Chem. 48, 201 (1993).CrossRefGoogle Scholar
  31. 26.
    L. Fritsche, Phil. Mag. B (in press).Google Scholar
  32. 27.
    J.E. Harriman, Phys. Rev. A. 24, 680 (1981).ADSCrossRefGoogle Scholar
  33. 28.
    M. Levy, Proc. Nat. Acad. Sci. USA 76, 6062 (1979).ADSCrossRefGoogle Scholar
  34. M. Levy, Phys. Rev. A. 26, 1200 (1982).ADSCrossRefGoogle Scholar
  35. 29.
    R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  36. 30.
    J. Harris, Phys. Rev. A. 29, 1648 (1984).ADSCrossRefGoogle Scholar
  37. 31.
    J.A. Alonso and L.A. Girifalco, Solid State Commun. 24, 135 (1977).ADSCrossRefGoogle Scholar
  38. J.A. Alonso and L.A. Girifalco, Phys. Rev. B. 17, 3735 (1978).ADSCrossRefGoogle Scholar
  39. 32.
    O. Gunnarsson, M. Jonson and B.J. Lundqvist, Phys. Rev. B. 20, 3136 (1979).ADSCrossRefGoogle Scholar
  40. 33.
    O. Gunnarsson and R.O. Jones, Phys. Script. 21, 394 (1980).ADSCrossRefGoogle Scholar
  41. 34.
    L. Fritsche and H. Gollisch, Z. Phys. B. 48, 209 (1982).ADSCrossRefGoogle Scholar
  42. 35.
    L. Fritsche and H. Gollisch, in: “Local Density Approximations in Quantum Chemistry and Solid State Physics”, J.P. Dahl and J. Avery, eds., Plenum, New York (1984), p. 245.Google Scholar
  43. 36.
    H. Przybylski and G. Borstel, Solid State Commun. 49, 317 (1984).ADSCrossRefGoogle Scholar
  44. H. Przybylski and G. Borstel, Solid State Commun. 52, 713 (1984).ADSCrossRefGoogle Scholar
  45. 37.
    M.P. Teter, Phys. Rev. B. 31, 1141 (1985).ADSCrossRefGoogle Scholar
  46. 38.
    S. Ossicini and C.M. Bertoni, Phys. Rev. A 31, 3550 (1985).ADSCrossRefGoogle Scholar
  47. 39.
    O.V. Gritsenko, A. Rubio, L.C. Balbas and J. Alonso, Chem. Phys. Lett. 205, 348 (1993).ADSCrossRefGoogle Scholar
  48. O.V. Gritsenko, A. Rubio, L.C. Balbas and J. Alonso, Phys. Rev. A. 48, 4197 (1993).ADSCrossRefGoogle Scholar
  49. 40.
    J.P. Perdew and M. Levy, Phys. Rev. B. 31, 6264 (1985).ADSCrossRefGoogle Scholar
  50. 41.
    L. Mattheiss, Phys. Rev. 133, A1399 (1964).ADSCrossRefGoogle Scholar
  51. 42.
    J. Harris and R.O. Jones, J. Phys. F: Met. Phys. 4, 1170 (1974).ADSCrossRefGoogle Scholar
  52. 43.
    O. Gunnarsson and B.J. Lundqvist, Phys. Rev. B. 13, 4274 (1976).ADSCrossRefGoogle Scholar
  53. 44.
    H. Gollisch, Z. Phys. B. 48, 53 (1982).ADSCrossRefGoogle Scholar
  54. 45.
    H. Eckardt, Doctoral Thesis, TU Clausthal (1984).Google Scholar
  55. 46.
    H. Eckardt and L. Fritsche, J. Phys. F: Met. Phys. 17, 1795 (1987).ADSCrossRefGoogle Scholar
  56. 47.
    C.P. Beulshausen, Doctoral Thesis, TU Clausthal (1993).Google Scholar
  57. 48.
    L. Hedin and B.J. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971).ADSCrossRefGoogle Scholar
  58. 49.
    U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1635 (1972).CrossRefGoogle Scholar
  59. 50.
    J.M. Gelfand and S.V. Fomin: “Calculus of Variation”, Englewood Cliffs, N.J.: Prentice Hall (1963), p. 27–29.Google Scholar
  60. 51.
    R. Courths and S. Hüfner, Physics Report. 112, 53 (1984).ADSCrossRefGoogle Scholar
  61. 52.
    J. Noffke and L. Fritsche, J. Phys. F: Met. Phys. 12, 921 (1982).ADSCrossRefGoogle Scholar
  62. 53.
    R. Haberland, L. Fritsche and J. Noffke, Phys. Rev. A. 33, 2305 (1986).ADSCrossRefGoogle Scholar
  63. 54.
    R. Haberland, Doctoral Thesis, TU Clausthal (1987).Google Scholar
  64. 55.
    R. Haberland and L. Fritsche, Int. J. Quantum Chem. S. 20, 289 (1987).Google Scholar
  65. 56.
    R. Haberland and L. Fritsche, J. Phys. B: At. Mol. Phys. 20, 121 (1987).ADSCrossRefGoogle Scholar
  66. 57.
    F. Kaussen, H. Geesmann, G.F. Hanne and J. Kessler, J. Phys. B: At. Mol. Phys. 20, 151 (1987).ADSCrossRefGoogle Scholar
  67. 58.
    M. Dümmler, M. Bartsch, H. Geesmann, G.F. Hanne and J. Kessler, J. Phys, B: At. Mol. Opt. Phys. 25, 4281 (1992).ADSCrossRefGoogle Scholar
  68. 59.
    A.H. MacDonald and S.H. Vosko, J. Phys. C: Solid State Phys. 12, 2977 (1979).ADSCrossRefGoogle Scholar
  69. 60.
    A.H. MacDonald, J.M. Daams, S.H. Vosko and D.D. Koelling, Phys. Rev. B. 23, 6377 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • L. Fritsche
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations