Density Functional Theory pp 651-661 | Cite as
Density Functional Approach to Vortex Matter
Chapter
Abstract
The magnetic phase diagram for a normal type-II superconductor has several important features, most notable of which are the upper and lower critical field lines, see figure 1.
Keywords
Flux Line Melting Transition Magnetic Phase Diagram Flux Creep Flux Lattice
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Tinkham, “Introduction to Superconductivity”, McGraw Hill, New York (1975).Google Scholar
- 2.U. Essmann and H. Träuble, Magnetic structures in superconductors, Physics Lett. A 24:526(1967).ADSCrossRefGoogle Scholar
- 3.A. A. Abrikosov, On the magnetic properties of superconductors of the second type, Zh. Eksperim i Teor. Fiz. 32:1442 (1957) [Soviet Phys. — JETP 5:1174 (1957)].Google Scholar
- 4.J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B — Condensed Matter 64:189(1986).ADSCrossRefGoogle Scholar
- 5.F. A. Lindemann, Molecular frequencies, Phys. Z. 11:609(1910).MATHGoogle Scholar
- 6.C. J. Lobb, Critical fluctuations in high-T c superconductors, Phys. Rev. D. 36:3930(1987).ADSGoogle Scholar
- 7.D. Ceperley, Ground state of the fermion one-component plasma: a. monte-carlo study in two and three dimensions, Phys. Rev. B 18:3126(1978).ADSCrossRefGoogle Scholar
- 8.P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo and C. A. Murray, Observation of hexagonally correlated flux quanta in YBa2Cu307, Phys. Rev. Lett. 59:2592(1987).ADSCrossRefGoogle Scholar
- 9.P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak and D. J. Bishop, Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu307 and Bi2.2Sr2Cao.8Cu208, Phys. Rev. Lett. 61:1666(1988).ADSCrossRefGoogle Scholar
- 10.T. T. M. Palstra, B. Batlog, L. F. Schneemeyer and J. V. Waszczak, Thermally activated dissipation in Bi2.2Sr2Ca,o.8Cu2O8+5, Phys. Rev. Lett. 61:1662(1988).ADSCrossRefGoogle Scholar
- 11.A. Umezawa, W. Zhang, A. Gurevich, Y. Feng, E. E. Hellstrom and D. C. Larbalestler, Flux pinning, granularity and the irreversibility line of the high-Tc superconductor HgBa2CuO4+x, Nature 364:129(1993).ADSCrossRefGoogle Scholar
- 12.Y. Yeshurun and A. P. Malozemoff, Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal: an alternative to the superconducting-glass model, Phys. Rev. Lett. 60:2202(1988).ADSCrossRefGoogle Scholar
- 13.P. W. Anderson and Y. B. Kim, Hard superconductivity: theory of the motion of Abrikosov flux lines, Rev. Mod. Phys. 36:39(1961).ADSCrossRefGoogle Scholar
- 14.D. R. Nelson, Vortex entanglement in high T c superconductors, Phys. Rev. Lett. 60:1973(1988).MathSciNetADSCrossRefGoogle Scholar
- D. R. Nelson, Vortex line fluctuations in superconductors from superconductors, Phys. Rev. Lett. 60:1973 (1988).MathSciNetADSCrossRefGoogle Scholar
- D. R. Nelson, Vortex line fluctuations in superconductors from elementary quantun mechanics, in: “Phase Transition and Relaxation in Systems with Competing Energy Scales”, NATO Advanced Study Institute, New York (1993).Google Scholar
- 15.D. S. Fisher, M. P. A. Fisher and D. A. Huse, Thermal fluctuations, quenched disorder, phase transitions and transport properties in type-II superconductors, Phys. Rev. B 43:130(1991).ADSCrossRefGoogle Scholar
- 16.A. I. Larkin and Y. N. Ovchinnikov, Pinning in type-II superconductors, J. Low Temp. Phys. 34:409(1979).ADSCrossRefGoogle Scholar
- 17.M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin and V. M. Vinokur, Theory of collective flux creep, Phys. Rev. Lett. 63:2303(1989).ADSCrossRefGoogle Scholar
- 18.T. V. Ramakrishnan and M. Yussouff, First-principles order-parameter theory of freezing, Phys. Rev. B 19:2775(1979).ADSCrossRefGoogle Scholar
- 19.B. B. Laird, J. D. McCoy and A. D. J. Haymet, Density functional theory of freezing: analysis of crystal density, J. Chem. Phys. 87:5445(1987).ADSCrossRefGoogle Scholar
- 20.J. F. Lutsko and M. Baus, Nonperturbative density-functional theories of classical nonuniform systems, Phys. Rev. A 41:6647(1990).ADSCrossRefGoogle Scholar
- 21.I. R. McDonald, The structure of simple liquids, in: “Liquids, Freezing and Glass Transition — Part 1”, Ed. J. P. Hansen, D. Levesque and J. Zinn-Justin, North Holland (1991).Google Scholar
- 22.S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, G. I. Menon and T. V. Ramakrishnan, Freezing of the vortex liquid in high-Tc superconductors: a density functional approach, Phys. Rev. Lett. 67:3444(1991).ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1995