Energetics of Solid Surfaces: Clusters and Anticlusters, Generalized Liquid-Drop Model, Energy Density, Stress Field, and Rigorous Theorems

  • Paul Ziesche
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

Bulk and (planar) surface energies of solids are more or less reliably known from density-functional theory (DFT) or from experiment. Unfortunately these quantities refer to idealized systems, which do not exist in reality, where solids are always finite. Thus their surfaces are necessarily curved. However little is known about the energetics of curved solid surfaces. Only during the last years a period started in solid state and surface science which will bring more light to all quantities characterizing curved solid surfaces energetically.

Keywords

Surface Energy Planar Surface Curvature Energy Cohesive Energy Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Perdew, Y. Wang, and E. Engel, Phys. Rev. Lett. 66, 508 (1991). — An example for weakly-curved surfaces, where the concept of curvature energy should apply, are Au hemispheres considered by.ADSCrossRefGoogle Scholar
  2. H.G. Craighead and G.A. Niklasson, Appl. Phys. Lett. 44, 1134 (1984).ADSCrossRefGoogle Scholar
  3. 2.
    E. Engel and J.P. Perdew, Phys. Rev. B43, 1331 (1991).ADSGoogle Scholar
  4. 3.
    C. Fiolhais and J.P. Perdew, Phys. Rev. B45, 6207 (1992).ADSGoogle Scholar
  5. 4.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B46, 6671 (1992).ADSGoogle Scholar
  6. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B48, E4978 (1993).ADSGoogle Scholar
  7. 5.
    G. Makov and A. Nitzan, Phys.Rev. B47, 2301 (1993).ADSGoogle Scholar
  8. 6.
    M. Brajczewska, C. Fiolhais, and P.J. Perdew, Int.J.Quantum Chem. S21, 249 (1993).CrossRefGoogle Scholar
  9. 7.
    J.P. Perdew, M. Brajczewska, and C. Fiolhais, Solid State Commun. 88, 795 (1993).ADSCrossRefGoogle Scholar
  10. 8.
    J.P. Perdew, P. Ziesche, and C. Fiolhais, Phys.Rev. B47, 16460 (1993).ADSGoogle Scholar
  11. 9.
    P. Ziesche, J.P. Perdew, and C. Fiolhais, Phys.Rev. B49, 7916 (1994).ADSGoogle Scholar
  12. 10.
    P. Ziesche, M.J. Puska, T. Korhonen, and R.M. Nieminen, J.Phys.: Condens.Matter 5, 9049 (1993).ADSCrossRefGoogle Scholar
  13. 11.
    R.C. Ball and R. Blumenfeld, Phys.Rev.Lett. 65, 1784 (1990).ADSCrossRefGoogle Scholar
  14. M. Marder, Phys.Rev.Lett. 68, 2253 (1992).ADSCrossRefGoogle Scholar
  15. 12.
    L.L. Kesmodel and L.M. Falicov, Solid State Commun. 16, 1201 (1975).ADSCrossRefGoogle Scholar
  16. 13.
    G. Schreckenbach, R. Kaschner, and P. Ziesche, Phys.Rev. B46, 7864 (1992).ADSGoogle Scholar
  17. 14.
    M.D. Thompson and H.B. Huntington, Surf.Sci. 116, 522 (1982).ADSCrossRefGoogle Scholar
  18. 15.
    M. Scheffler, J. Neugebauer, and R. Stumpf, J.Phys.: Condens.Matter 5, A91 (1993); R.Stumpf and M.Scheffler, Phys.Rev.Lett., in press.ADSCrossRefGoogle Scholar
  19. 16.
    R. Stumpf, Ph.D.thesis, Technische Universität Berlin, 1993.Google Scholar
  20. 17.
    J. Tersoff and E. Pehlke, Phys.Rev.Lett. 68, 816 (1992).ADSCrossRefGoogle Scholar
  21. R.M. Tromp and M.C. Reuter, Phys.Rev.Lett. 68, 820 (1992).ADSCrossRefGoogle Scholar
  22. 18.
    O.L. Alerhaiid, D. Vanderbilt, R.U. Meade, and J.D. Joannopoulos, Phys.Rev.Lett. 61, 1973 (1988);.ADSCrossRefGoogle Scholar
  23. O.L. Alerhaiid, A.N. Bcrker, J.D. Joannopoulos, D. Vanderbilt, R.J. Ilamcrs. and J.E. Demuth, ibid. 64, 2400 (1990).ADSGoogle Scholar
  24. 19.
    J. Neugebauer and M. Schefïier, Phys.Rev.Lett. 71, 577 (1993).ADSCrossRefGoogle Scholar
  25. 20.
    G. Bilalbegovic, F. Krcolessi, and E. Tosatti, Surf.Sci. 280, 335 (1993).ADSCrossRefGoogle Scholar
  26. 21.
    J. Stewart, Phys.Rev.Lett. 71, 887 (1993).ADSCrossRefGoogle Scholar
  27. 22.
    A.C. Redheld and A. Zangwill, Phys.Rev. B46, 4289 (1992).ADSGoogle Scholar
  28. 23.
    O.S. Welsh and J.F. Annett, to be published, and references therein.Google Scholar
  29. 24.
    J.S. Nelson and P.J. Feibelman, Phys.Rev.Lett. 68, 2188 (1992).ADSCrossRefGoogle Scholar
  30. 25.
    H. Ishida and A. Liebsch, Phys.Rev. B46, 7153 (1992).ADSGoogle Scholar
  31. 26.
    Z.-J. Tian and T.S. Rahman, Phys.Rev. B47, 9751 (1993).ADSGoogle Scholar
  32. 27.
    C.M. Watson, D. Gibbs, D.M. Zchner, M. Yoon, and S.G.J. Mochrie, Phys.Rev.Lett. 71, 3166 (1993).ADSCrossRefGoogle Scholar
  33. 28.
    H. Häkkinen, J. Merikoski, M. Manninen, J. Timonen, and K. Kaski. Phys.Rev.Lett. 70, 2451 (1993).ADSCrossRefGoogle Scholar
  34. 29.
    P. Ziesche. subm. to Comput.Mat.Sci. (Proc. TAMC 1, Leer, 13–18 June, 1993).Google Scholar
  35. 30.
    P. Ziesche, Ann.Physik (Leipzig) 45, 626 (1988).ADSCrossRefGoogle Scholar
  36. 31.
    P. Ziesche, in Applications of Multiple Scattering Theory to Material Science, edited by W.U. Butler et al. (MRS, Pittsburgh, 1992), p.85.Google Scholar
  37. 32.
    R.F.W. Bader, Atoms in Molecules (Oxford University Press, Oxford, 1990).Google Scholar
  38. 33.
    N. Chetty and R.M. Martin, in The Structure of Surfaces III (Springer Series in Surface Sciences, Vol.24), edited by.S.Y. Tong, M.A. Van Hove, K. Takayanagi, and X.D. Xie (Springer, Berlin, 1991), p.9.Google Scholar
  39. S.Y. Tong, M.A. Van Hove, K. Takayanagi, and X.D. Xie Phys.Rev. B45, 6089 (1992).Google Scholar
  40. 34.
    P. Ziesche, J. Gräfeiistein, and O.H. Nielsen, Phys.Rev. B37, 8167 (1988).ADSGoogle Scholar
  41. P. Ziesche, J. Gräfeiistein, and O.H. Nielsen, Phys.Scripta 37, 370 (1988).ADSCrossRefGoogle Scholar
  42. 35.
    Yu.A. Uspenskij, P. Ziesche, and J. Gräfeiistein, Z.Phys. B76, 193 (1989).ADSCrossRefGoogle Scholar
  43. 36.
    J. Gräfeiistein and P. Ziesche, Phys.Rev. B41, 3245 (1990).ADSGoogle Scholar
  44. 37.
    R.F.W. Bader and P.L.A. Popelier, Int.J.Quantum Chem. 45, 189 (1993).CrossRefGoogle Scholar
  45. 38.
    Á. Nagy, Phys.Rev. A46, 5417 (1992).ADSGoogle Scholar
  46. 39.
    P. Giittinger, Z.Phys. 73, 169 (1932);.ADSCrossRefGoogle Scholar
  47. H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig,1937), pp.61, 285.Google Scholar
  48. R.P. Feyninan. Phys.Rev. 56, 340 (1939).ADSCrossRefGoogle Scholar
  49. 40.
    D. Lehmann and P. Ziesche, Ilelv.Phys.Acta 57, 621 (1984).Google Scholar
  50. 41.
    D. Lehmann and P. Ziesche, Solid State Commun. 56, 847 (1985).ADSCrossRefGoogle Scholar
  51. 42.
    W. Ekardt, J. Kühn. D. Lehmann, and P. Ziesche, Solid State Commun. 64, 1371 (1987).ADSCrossRefGoogle Scholar
  52. 43.
    R. Kaschncr and P. Ziesche, Phys.stat.sol.(b) 138, 65 (1986).ADSCrossRefGoogle Scholar
  53. R. Kaschner and P. Ziesche, Phys.Scripta 38, 414 (1988).ADSCrossRefGoogle Scholar
  54. 44.
    P. Ziesche and R. Kaschner, phys.stat.sol.(b) 145, K9 (1988).ADSCrossRefGoogle Scholar
  55. 45.
    P. Ziesche and R. Kaschner, Solid State Commun. 78, 703 (1991).ADSCrossRefGoogle Scholar
  56. 46.
    P. Ziesche and J. Gräfenstein, Phys.Rev. B46, 1715 (1992).ADSGoogle Scholar
  57. 47.
    A. Kiejna, P. Ziesche, and R. Kaschner, Phys.Rev. B48, 4811 (1993).ADSGoogle Scholar
  58. 48.
    R. Kaschner and P. Ziesche, preprint NORDITA-88/28 S, 1988.Google Scholar
  59. R. Kaschner. Ph.D.thesis, Technische Universität Dresden, 1989.Google Scholar
  60. 49.
    D. Lehmann and P. Ziesche, phys.stat.sol.(b) 135, 651 (1986).ADSCrossRefGoogle Scholar
  61. 50.
    M.P. Das, R. Kaschner, N. Nafari, and P. Ziesche, Solid State Commun. 63, 367 (1987).ADSCrossRefGoogle Scholar
  62. 51.
    P. Ziesche, R. Kaschner, and N. Nafari, Phys.Rev. B41, 10553 (1990).ADSGoogle Scholar
  63. 52.
    P. Ziesche and R. Kaschner, Physica B172, 299 (1991).ADSGoogle Scholar
  64. 53.
    Landolt-Börnstein, Numerical Deda and Functional Relationships in Science and Technology III, Vol.25: Atomic Defects in Metals, edited by H. Ullmaier (Springer, Berlin, 1991).Google Scholar
  65. 54.
    K. Mosig, J. Wolfr, J.-E. Kluin, and Th. Hehenkamp, J.Phys.: Condens.Matter 4, 1447 (1992), and K.Mosig, private communication.ADSCrossRefGoogle Scholar
  66. 55.
    H.L. Skriver and N.M. Rosengaard, Phys.ltev. B46, 7157 (1992).ADSGoogle Scholar
  67. 56.
    C. Kittel, Introduction to Solid State Physics, 5th edition (Wiley, New York, 1976).Google Scholar
  68. 57.
    K. Willcnborg, Diplomarbeit, TH Aachen / IFF Jiilich, 1992.Google Scholar
  69. 58.
    R. Zeller, in Metallic Alloys: Experimental and Theoretical Perspectives, NATO ASI Series, edited by J.S. Faulkner (Kluwer Academic Publ., Dordrecht, 1994), in press.Google Scholar
  70. 59.
    P. Ziesche, A.P. Seitsonen, M.J. Puska, and R.M. Nieminen, to be published.Google Scholar
  71. 60.
    J.P. Perdew, II. Q. Tran, and E.D. Smith, Phys.Rev. B42, 11627 (1990).ADSGoogle Scholar
  72. au]61.
    H. B. Shore and J.D. Rose, Phys.Rev.Lett. 66, 2519 (1991). — The’ ideal metal’ proposed in this reference has the same surface properties as the’ stabilized jellium’ of Ref. 60, but less-satisfactory bulk properties, as shown by J.M. Soler, Phys.Rev.Lett. 67, 3044 (1991).ADSCrossRefGoogle Scholar
  73. 62.
    B. Montag, Diplomarbeit, Universtität Erlangen, 1993. — The’ structure-averaged jellium’ proposed in this reference is (essentially) the’ stabilized jellium’ of Ref. 60 slightly modified. It is applied to spherical jellium.Google Scholar
  74. 63.
    A. Kiejna, Phys.Rev. B47, 7361 (1993).ADSGoogle Scholar
  75. 64.
    A. Kiejna and P. Ziesche, Solid State Commun. 88, 143 (1993).ADSCrossRefGoogle Scholar
  76. 65.
    J.P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin,1991), p.11. — The generalized gradient approximation proposed in this reference is formally tested (convexity constraint etc.) by M. Levy and J.P. Perdew, Phys.Rev. B48, 11638 (1993).Google Scholar
  77. 66.
    P. Ziesche, Solid State Commun. 82, 597 (1992).ADSCrossRefGoogle Scholar
  78. 67.
    E.D. Williams and N.C. Bartelt, Science 251, 393 (1991).ADSCrossRefGoogle Scholar
  79. J. Frohn, M. Giesen, M. Poensgen, J.F. Wolf, and H. Ibach, Phys.Rev.Lett. 67, 3543 (1991);.ADSCrossRefGoogle Scholar
  80. Tapio Ala-Nissilä, Ph.D.thesis, Temple University, 1986, and references therein; C. Jayaprakash, C. Rottman, and W.F. Saam, Phys.Rev. B30, 6549 (1984).ADSGoogle Scholar
  81. 68.
    R. Scheffler, private communication.Google Scholar
  82. 69.
    S. Valkealahti and M. Manninen, Phys.Rev. B45, 9459 (1993).ADSGoogle Scholar
  83. J.F. Janak, Phys.Rev. B9, 3985 (1974).ADSGoogle Scholar
  84. F.W. Averill and G.S. Painjer, Phys.Rev. B24, 6795 (1981).ADSGoogle Scholar
  85. M. Levy and J.P. Perdew, Phys.Rev. A32, 2010 (1985).ADSGoogle Scholar
  86. 71.
    A. Theophilou, J.Phys. F2, 1124 (1972). — His Eq.(2.43) agrees for F = 0 with Eq.(3) of H.F. Budd and J. Vannimenus, Phys.Rev.Lett. 31, 1218, E1430 (1973). — From the interpretation of this theorem as a force sum rule its generalization for half-space filling crystals was derived in Refs. 43,44. This provides a qualitative understanding of alternating multilayer relaxations at planar surfaces.ADSCrossRefGoogle Scholar
  87. 72.
    R. Monnier and J.P. Perdew, Phys.Rev. B17, 2595 (1978).ADSGoogle Scholar
  88. 22.
    E1124(1980). — See their Eq.(F14) with C =-nde/dn and X = 0.Google Scholar
  89. 73.
    N.D. Lang and W. Kohn, Phys.Rev. B1, 4555 (1970).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Paul Ziesche
    • 1
  1. 1.Laboratory of PhysicsHelsinki University of TechnologyEspooFinland

Personalised recommendations