Charge Sensitivity Analysis as Diagnostic Tool for Predicting Trends in Chemical Reactivity

  • Roman F. Nalewajski
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

The recent progress in density functional theory (DFT) [1–3] besides producing new attractive schemes for the electronic structure computation has also provided a framework for formulating novel concepts to describe the behaviour of molecular systems [3–6]. In chemistry this conceptual development has had a distinctly unifying character. Namely, some of the originally intuitive but remarkably successful tools of chemistry, such as the global electronegativity [4, 5] and hardness [6, 7], which have long been part of the chemical vocabulary, have been shown to be fundamental and well defined [4, 6]. The DFT rationalization of these quantities has also led to a theoretical validation of some old ideas of chemistry, viz., the electronegativity equalization (EE) [8], the Hard and Soft Acids and Bases (HSAB) rule, and the maximum hardness principle [9]. The DFT of the electronegativity and other related derivative properties of atoms and ions has been developed [3, 9–15] and the crucial for chemistry problem of the origin of molecular binding has been approached from the DFT viewpoint [3, 6, 11, 16–19].

Keywords

Charge Transfer Electron Population Fukui Function Charge Transfer Energy Electronegativity Equalization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    W. Kohn and L.J. Sham, Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia (Plenum, New York, 1975).Google Scholar
  4. W. Kohn and L.J. Sham, Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N.H. March (Plenum, New York,1983).Google Scholar
  5. R.M. Dreizler and E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990), Vol. 21; Advances in Quantum Chemistry (Academic, New York, 1990).MATHCrossRefGoogle Scholar
  6. 3.
    R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989), and rerefernces therein.Google Scholar
  7. 4.
    R.G. Parr, R. A. Donnelly, M. Levy, and W.E. Palke, J. Chem. Phys. 68, 3801 (1978).ADSCrossRefGoogle Scholar
  8. 5.
    Electronegativity, edited by K.D. Sen and C.K. Jørgensen, Structure and Bonding Vol. 66 (Springer-Verlag, Berlin, 1987), and references therein.Google Scholar
  9. 6.
    R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).CrossRefGoogle Scholar
  10. 7.
    Chemical Hardness, edited by K.D. Sen, Structure and Bonding Vol. 80 (Springer-Verlag, Berlin, 1993), and references therein.Google Scholar
  11. 8.
    R.T. Sanderson, Science 114, 670 (1951).ADSCrossRefGoogle Scholar
  12. 9.
    R.G. Pearson, in Ref. 7, p. 1; P.K. Chattaraj and R.G. Parr, ibid. p. 11, and references therein.Google Scholar
  13. 10.
    L.J. Bartolotti, in Ref. 5, p. 25.Google Scholar
  14. 11.
    J.A. Alonso and L.C. Balbás, ibid. p. 41.Google Scholar
  15. 12.
    K.D. Sen, M.C. Böhm, and P.C. Schmidt, ibid. p. 99; K. Sen, in Ref. 7, p.87. 13. N.H. March, ibid. p. 71.Google Scholar
  16. 14.
    R.F. Nalewajski, Acta Phys. Polon. A 77, 817 (1990).Google Scholar
  17. 15.
    R.F. Nalewajski, J. Phys. Chem. 89, 2831 (1985).CrossRefGoogle Scholar
  18. 16.
    R.F. Nalewajski and M. Koninski, J. Phys. Chem. 88, 6234 (1984).CrossRefGoogle Scholar
  19. R.F. Nalewajski, J.Am. Chem. Soc. 106, 944 (1984).CrossRefGoogle Scholar
  20. 17.
    R.F. Nalewajski and M. Koninski, Acta Phys. Polon. A 74, 255 (1988).Google Scholar
  21. R.F. Nalewajski, Z. Naturforsch. 43a, 65 (1987); in Proceedings of the International Symposium on the Dynamics of Systems with Chemical Reactions, edited by J. Popielawski (World. Scientific, Singapore, 1989), p. 325.Google Scholar
  22. 18.
    S.K. Ghosh and R.G. Parr, Theoret. Chim. Acta, 72, 379 (1987).CrossRefGoogle Scholar
  23. 19.
    J.L. Gázquez, in Ref. 7, p.27., and references therein.Google Scholar
  24. 20.
    R.F. Nalewajski, ibid. p. 115, and references therein.Google Scholar
  25. 21.
    B.G. Baekelandt, W.J. Mortier, and R.A. Schoonheydt, ibid. p. 187, and references therein.Google Scholar
  26. 22.
    R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 68, 123 (1991).CrossRefGoogle Scholar
  27. 23.
    R.F. Nalewajski, A.M. Köster, T. Bredow, and K. Jug, J. Mol. Catal. 82, 407 (1993).CrossRefGoogle Scholar
  28. 24.
    R.F. Nalewajski, J. Korchowiec, R. Tokarz, E. Broclawik, and M. Witko, J. Mol. Catal. 77, 165 (1992).CrossRefGoogle Scholar
  29. 25.
    R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 82, 383 (1993).CrossRefGoogle Scholar
  30. 26.
    C. Lee, W. Yang, and R.G. Parr, J. Mol. Struct. (Theochem) 163, 305 (1988).CrossRefGoogle Scholar
  31. 27.(a)
    R.F. Nalewajski, J. Korchowiec, and Z. Zhou, Int. J. Quantum Chem. Symp. 22, 349 (1988).CrossRefGoogle Scholar
  32. (b).
    R.F. Nalewajski, Int. J. Quantum Chem. 40, 265 (1991).CrossRefGoogle Scholar
  33. R.F. Nalewajski, Int. J. Quantum Chem. 43, 443 (1992).CrossRefGoogle Scholar
  34. 28.
    Z. Zhou and R.G. Parr, J. Am. Chem. Soc. 112, 5720 (1990).CrossRefGoogle Scholar
  35. 29.(a)
    R.F. Nalewajski and J. Korchowiec, Acta Phys. Polon A, 76, 747 (1989).Google Scholar
  36. (b).
    R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 54, 324 (1989).CrossRefGoogle Scholar
  37. (c).
    J. Korchowiec and R.F. Nalewajski, Int. J. Quantum Chem. 44, 1027 (1992).CrossRefGoogle Scholar
  38. 30.
    A. Tachibana and R.G. Parr, Int. J. Quantum Chem. 41, 527 (1992).CrossRefGoogle Scholar
  39. 31.(a)
    R.F. Nalewajski, Int. J. Quantum Chem. 42, 243 (1992).CrossRefGoogle Scholar
  40. (b).
    ibid, (to be published); the mode resolved ISM presented in this work includes incorrect form of the matrix defining the orientation of the reactant atomic vector spaces.Google Scholar
  41. 32.
    R.F. Nalewajski, J. Korchowiec, and A. Michalak, Proceedings (Chemical Science), edited by S. Gadre (to bepublished).Google Scholar
  42. 33.
    B.G. Baekelandt, G.O.A. Janssens, H. Toufar, W.J. Mortier, and R.F. Nalewajski (unpublished).Google Scholar
  43. 34.
    R.F. Nalewajski, J. Mol. Catal. 82, 371 (1993).CrossRefGoogle Scholar
  44. 35.
    J.L. Gázquez, A.M. Vela, and M. Galván, in Ref. 5, p. 79.Google Scholar
  45. 36.
    J.A. Alonso and L.C. Balbás, in Ref. 7, p. 229.Google Scholar
  46. 37.
    D. Bergmann and J. Hinze, in Ref. 5, p. 145.Google Scholar
  47. 38.
    R.F. Nalewajski and J. Mrozek, Int. J. Quantum Chem. 43, 353 (1992).CrossRefGoogle Scholar
  48. R.F. Nalewajski, Int. J. Quantum Chem. 44, 67 (1992).CrossRefGoogle Scholar
  49. R.F. Nalewajski, Int. J. Quantum Chem. Symp. 26, 253 (1992).CrossRefGoogle Scholar
  50. 39.
    J. Hinze, M.A. Whitehead, and H.H. Jaffé, J. Am. Chem. Soc. 85, 148 (1963).CrossRefGoogle Scholar
  51. J. Mullay, in Ref. 5, p. 1, and references therein.Google Scholar
  52. 40.
    R.F. Nalewajski, J. Phys. Chem. 93, 2658 (1989).CrossRefGoogle Scholar
  53. 41.
    J.C. Decius, J. Chem. Phys. 38, 241 (1963).ADSCrossRefGoogle Scholar
  54. L.H. Jones and R.R. Ryan, J. Chem. Phys. 52, 2003 (1970).ADSCrossRefGoogle Scholar
  55. 42.
    B.I. Swanson, J. Am. Chem. Soc. 98, 3067 (1976).CrossRefGoogle Scholar
  56. B.I. Swanson and S.K. Satija, J. Am. Chem. Soc. 99, 987 (1977).CrossRefGoogle Scholar
  57. 43.
    M. Streszewski and R.F. Nalewajski, Int. J. Quantum Chem. 38, 853 (1990).CrossRefGoogle Scholar
  58. 44.
    K. Ohno, Theoret. Chim. Acta 10, 111 (1968).CrossRefGoogle Scholar
  59. K. Ohno, Adv. Quantum Chem. 3, 239 (1967).ADSCrossRefGoogle Scholar
  60. 45.
    V. Guttman, The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).CrossRefGoogle Scholar
  61. 46.
    H.B. Callen, Thermodynamics (Wiley, New York, 1960).MATHGoogle Scholar
  62. 47.
    M. Polanyi, Atomic Reactions (Williams and Norgate, London, 1932).Google Scholar
  63. L.L. Magee, J. Chem. Phys. 8, 687 (1940).ADSCrossRefGoogle Scholar
  64. see also: R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics (Clerendon, Oxford, 1974), p. 86.Google Scholar
  65. 48.
    J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).ADSCrossRefGoogle Scholar
  66. 49.
    G.S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).CrossRefGoogle Scholar
  67. J.C. Polanyi, J. Chem. Phys. 31, 1338 (1959).ADSCrossRefGoogle Scholar
  68. M.H. Mok and J.C. Polanyi, J. Chem. Phys. 51, 1451 (1969).ADSCrossRefGoogle Scholar
  69. R.A. Marcus, J. Chem. Phys. 72, 891 (1968).CrossRefGoogle Scholar
  70. N. Agmon and R.D. Levine, Chem. Phys. Lett. 52, 197 (1977).ADSCrossRefGoogle Scholar
  71. 50.
    R.A. Marcus, J. Chem. Phys. 24, 266 (1956).Google Scholar
  72. V.G. Levich, R. Dagonadze, A. Kuznetsov, Electrochim. Acta 13, 1025 (1968).CrossRefGoogle Scholar
  73. A.J.C. Varandas and S.J. Formosinho, J. Chem. Soc. Faraday Trans. 2, 82, 953 (1986).CrossRefGoogle Scholar
  74. 51.
    T.H. Dunning, J. Phys. Chem. 88, 2469 (1984).CrossRefGoogle Scholar
  75. 52.
    G.C. Lynch, R. Steckler, D.W. Schwenke, A.J.C. Varandas, D.G. Truhlar, and B.C. Garrett, J. Chem. Phys. 94, 7136 (1991).ADSCrossRefGoogle Scholar
  76. 53.
    M. Dupuis, D. Spangler, and J.J. Wendoloski, National Resource for Computations in Chemistry Sotfware Catalog: Program QGO (University of California, Berkeley, 1980).Google Scholar
  77. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, J.H. Jensen, S. Koseki, M.S. Gordon, K.A. Nguyen, T.L. Windus, and S.T. Elbert, QCPE Bulletin, 10, 52 (1990); see also: General Atomic and Molecular Electronic Structure System GAMESS: User’s Guide [North Dakota State University (Fargo) and Iowa State University (Ames)].Google Scholar
  78. 54.
    R.L. Kurtz, R. Stockbauer, T.E. Madey, E. Roman, and J.L. de Segovia, Surf. Sci. 218, 178 (1989), and references therein.ADSCrossRefGoogle Scholar
  79. 55.
    W.J. Lo, Y.W. Chung, and G.A. Somorjai, Surf. Sci. 71, 199 (1978).CrossRefGoogle Scholar
  80. 56.
    D.N. Nanda and K. Jug, Theoret. Chim. Acta, 57, 95 (1980).CrossRefGoogle Scholar
  81. K. Jug, R. Iffert, and J. Schulz. Int. J. Quantum Chem. 32, 265 (1987).CrossRefGoogle Scholar
  82. J. Li and K. Jug, J. Comput. Chem. 13, 85 (1992).CrossRefGoogle Scholar
  83. 57.
    M. Witko, R. Tokarz, and J. Haber, J. Mol. Catal. 66, 205, 357 (1991).Google Scholar
  84. M. Witko, J. Haber, and R. Tokarz, J. Mol. Catal. 82, 457 (1993).CrossRefGoogle Scholar
  85. 58.
    A. Golebiewski, R.F. Nalewajski, and M. Witko, Acta Phys. Polon. A 51, 617 (1977).Google Scholar
  86. A. Golebiewski and M. Witko, Acta Phys. Polon. A 51, 629 (1977).Google Scholar
  87. A. Golebiewski and M. Witko, Acta Phys. Polon. A 57, 585 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roman F. Nalewajski
    • 1
  1. 1.K. Gumiński Department of Theoretical ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations