Dendritic Cell Surface Molecules

A Proliferating Field
  • D. N. J. Hart
  • G. J. Clark
  • J. W. Dekker
  • D. B. Fearnley
  • M. Kato
  • B. D. Hock
  • A. D. McLellan
  • T. Neil
  • R. V. Sorg
  • U. Sorg
  • K. L. Summers
  • S. Vuckovic
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

Dendritic cells (DC) are specialist antigen presenting cells (APC) derived in common with other leukocytes from bone marrow stem cells.1,2 A myeloid derived precursor3 gives rise to immature circulating blood DC which enter the tissues and after interacting with antigen migrate to the T lymphocyte dependent areas of lymph nodes, where they deliver stimulatory signals to responding T lymphocytes. Recent studies suggest the growth and differentiation of myeloid DC is heavily influenced by cytokines, notably flt-3 ligand, SCF, GM-CSF, IL-4 and TNFα4–6. A unique DC precursor in blood can he distinguished from freshly isolated blood monocytes.7,8 However, considerable evidence suggests that monocytes exposed in vitro to certain cytokine combinations (notably including IL-4, which downregulates CD14) can acquire many, if not most DC characteristics.9 The DC series also includes a lymphoid precursor derived cell10 a subset of which, in the mouse, has an inhibiting effect on responding T lymphocytes. Lymphoid precursor cells have been described in man11,12 hut their function is unknown.

Keywords

Dendritic Cell Myeloid Dendritic Cell Dendritic Cell Population Antigen Present Cell Function Thymic Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271, 1991PubMedCrossRefGoogle Scholar
  2. 2.
    Williams L, Egner W, Hart DNJ: Isolation and function of human dendritic cells. Int J Cytology 153: 41, 1994CrossRefGoogle Scholar
  3. 3.
    Egner W, McKenzie JL, Smith SM, Beard MEJ, Hart DNJ: Identification of potent mixed leucocyte reaction-stimulatory cells in human bone marrow. J Immunol 150: 3043, 1993PubMedGoogle Scholar
  4. 4.
    Szabolcs P, Avigan D, Gezelter S, Ciocon DH, Moore MAS, Steinman RM, Young JW: Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate. Blood 87: 4520, 1996PubMedGoogle Scholar
  5. 5.
    Siena S, Di Nicola M, Bregni M, Mortarini R, Anichini A, Lombardi L, Ravagnani F, Parmiani G, Gianni AM: Massive ex vivo generation of functional dendritic cells from mobilized CD34’ blood progenitors for anticancer therapy. Exp Hematol 23: 1463, 1995PubMedGoogle Scholar
  6. 6.
    Saraya K, Reid CDL: Stem cell factor and the regulation of dendritic cell production from CD34(+) progenitors in bone marrow and cord blood. Br J Haematol 93: 258, 1996PubMedCrossRefGoogle Scholar
  7. 7.
    Egner W, Andreesen R, Hart DNJ: Allostimulatory cells in fresh human blood: heterogeneity in antigen presenting cell populations. Transplantation 56: 945, 1993PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas R, Davis LS, Lipskey PE: Comparative accessory cell function of human peripheral blood dendritic cells and monocytes. J Immunol 151: 6840, 1993PubMedGoogle Scholar
  9. 9.
    Peters JH, Ruppert J, Gieseler RKH, Najar HM, Xu H: Differentiation of human monocytes into CD14 negative accessory cells: do dendritic cells derive from the monocytic lineage? Pathobiol 59: 122, 1991CrossRefGoogle Scholar
  10. 10.
    Ardavin C, Shortman K: Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362: 761, 1993PubMedCrossRefGoogle Scholar
  11. 11.
    Galy A. Travis M. Cen D, Chen B: Human T, B, natural killer and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3: 459, 1995PubMedCrossRefGoogle Scholar
  12. 12.
    Res P, Martinezcaceres E, Jaleco AC, Staal F, Noteboom E, Weijer K, Spits H: CD34(+) CD38 (dim) cells in the human thymus can differentiate into T. natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87: 5196, 1996PubMedGoogle Scholar
  13. 13.
    Nussenzweig MC, Steinman RM. Witmer MD, Gutchinov B: A monoclonal antibody specific for mouse dendritic cells. Proc Natl Acad Sci USA 79: 161, 1982PubMedCrossRefGoogle Scholar
  14. 14.
    Kraal G, Bred M, Janse M, Bruin G: Langerhans cells, veiled cells and interdigitating cells in the mouse recognised by a monoclonal antibody. J Exp Med 163: 981, 1986PubMedCrossRefGoogle Scholar
  15. 15.
    Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM: The distinct leucocyte integrins of mouse spleen DC as identified with new hamster mAb. J Exp Med 171:1753, 199(1Google Scholar
  16. 16.
    Hock BD, Starling GC, Daniel PB, Hart DNJ: Characterisation of CMRF-44, a novel monoclonal antibody to an activation antigen expressed by the allostimulatory cells within peripheral blood, including dendritic cells. Immunol 83: 573, 1994Google Scholar
  17. 17.
    McLellan AD, Starling GC, Hart DNJ: Isolation of human blood dendritic cells by Nycodcnz discontinuous gradient centrifugation. J Immunol Methods 184: 81, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Fearnley DB, McLellan AD, Mannering SI, Hock BD, Hart DNJ: Isolation of human blood dendritic cells using the CMRF-44 monoclonal antibody: implications for studies on antigen presenting cell function and immunotherapy. Blood In press: 1996Google Scholar
  19. 19.
    Zhou L, Schwarting R, Smith HM, Tedder TF: A novel cell-surface molecular expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the 1g superfamily. J Immunol 149: 735, 1992PubMedGoogle Scholar
  20. 20.
    Zhou L, Tedder TE: Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily.,I Immunol 154: 3821, 1995Google Scholar
  21. 21.
    Daish A, Starling GC, McKenzie JL, Nimmo.IC, Jackson DG, Hart DNJ: Expression of the CMRF-35 antigen, a new member of the immunoglobulin gene superfamily, is differentially regulated on leucocytes. Immunol 79: 55, 1993Google Scholar
  22. 22.
    Jackson DG, Hart DNJ, Starling GC, Bell JI: Molecular cloning of a novel member of the immunoglobulin gene superfamily homologous to the polymeric immunoglobulin receptor. Eur J Immunol 22: 1157. 1992PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375: 151, 1995PubMedCrossRefGoogle Scholar
  24. 24.
    McKenzie JL, Prickett TCR, Hart DNJ: Human dendritic cells stimulate allogeneic T cells in the absence of IL-1. Immunol 67: 290, 1989Google Scholar
  25. 25.
    McKenzie JL, Calder VC, Starling GC, Hart DNJ: Role of tumor necrosis factor a in dendritic cell mediated primary mixed leukocyte reactions. Bone Marrow Transplantation 15: 163, 1995PubMedGoogle Scholar
  26. 26.
    Zhou L, Tedder TF: A distinct pattern of cytokine gene expression by human CD83’ blood dendritic cells. Blood 86: 3295, 1995PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • D. N. J. Hart
    • 1
  • G. J. Clark
    • 1
  • J. W. Dekker
    • 1
  • D. B. Fearnley
    • 1
  • M. Kato
    • 1
  • B. D. Hock
    • 1
  • A. D. McLellan
    • 1
  • T. Neil
    • 1
  • R. V. Sorg
    • 1
  • U. Sorg
    • 1
  • K. L. Summers
    • 1
  • S. Vuckovic
    • 1
  1. 1.Haematology/Immunology/Transfusion Medicine Research GroupChristchurch HospitalChristchurchNew Zealand

Personalised recommendations