TGF-β1 Dependent Generation of LAG+ Dendritic Cells from CD34+ Progenitors in Serum-Free Medium

  • Herbert Strobl
  • Elisabeth Riedl
  • Clemens Scheinecker
  • Concha Bello-Fernandez
  • Winfried F. Pickl
  • Otto Majdic
  • Walter Knapp
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

Several studies have shown that substantial numbers of functional dendritic cells (DC) can be generated in vitro from human CD34+ progenitor cells upon culture with the two cytokines GM-CSF and TNFα.1,2,3 More recent data suggest that at least two in vitro differentiation pathways for the development of DC seem to exist.4,5,6 One pathway gives rise to Langerhans (LC) type DC. Phenotypically, this pathway follows the route CD34+ to CD1a+ to CD1a+/Lag+ and does not involve a CD14+ monocytoid intermediate cell stage.5

Keywords

Dendritic Cell Monocytoid Cell Dendritic Cell Development Hemopoietic Progenitor Cell Umbilical Cord Blood Mononuclear Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reid, C. D. L., Stackpoole, A., Meager, A. and Tikerpace, J. 1992. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34 progenitors in human bone marrow. J Immunol 149: 2681.PubMedGoogle Scholar
  2. 2.
    Caux, C., Dezutter-Dambuyant, C., Schmitt, D. and Banchereau, J. 1992. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature 360: 258.PubMedCrossRefGoogle Scholar
  3. 3.
    Santiago-Schwarz, F., Belilos, E., Diamond, B. and Carsons, S. E. 1992. TNF in combination with GMCSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 52: 274.PubMedGoogle Scholar
  4. 4.
    Szabolcs, P., Avigan, D., Gezelter, S., Ciocon, D. H., Moore, M. A. S., Steinman, R. M. and Young, J. W. 1996. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate. Blood 87: 4520.PubMedGoogle Scholar
  5. 5.
    Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D. and Banchereau, J. 1996. CD34 hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFa. J Exp Med 184: 695.PubMedCrossRefGoogle Scholar
  6. 6.
    Galy, A., Travis, M., Cen, D. and Chen, B. 1995. Human T, B, natural killer cells, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3: 459.PubMedCrossRefGoogle Scholar
  7. 7.
    Strobl, H., Riedl, E., Scheinecker, C., Bello-Fernandez, C., Pickl, W. F., Rappersberger, K., Majdic, O. and Knapp, W. 1996. TGF-(31 promotes in vitro development of dendritic cells from CD34 hemopoietic progenitors. J Immunol 157: 1499.PubMedGoogle Scholar
  8. 8.
    Scheinecker, C., Strobl, H., Fritsch, G., Csmarits, B., Krieger, O., Majdic, O. and Knapp, W. 1995. Granulomonocyte-associated lysosomal protein expression during in vitro expansion and differentiation of CD34’ hemopoietic progenitor cells. Blood 86: 4115.PubMedGoogle Scholar
  9. 9.
    Massagué, J., Attisano, L. and Wrana, J. L. 1994. The TGF-13 family and its composite receptors. Trends in Cell Biol. 4: 172.CrossRefGoogle Scholar
  10. 10.
    Childs, C. B., Proper, J. A., Tucker, R. F. and Moses, H. L. 1982. Serum contains a platelet-derived transforming growth factor. Proc Natl Acad Sci USA 79: 5312.PubMedCrossRefGoogle Scholar
  11. 11.
    Keller, J. R., Jacobsen, S. E. W., Sill, K. T., Ellingsworth, L. R. and Ruscetti, F. W. 1991. Stimulation of granulopoiesis by transforming growth factor f3: Synergy with granulocyte/macrophage-colony-stimulating factor. Proc Natl Acad Sci USA 88: 7190.PubMedCrossRefGoogle Scholar
  12. 12.
    Piabicello, W., Ferrero, D., Sanavio, F., Badoni, R., Stacchini, A., Severino, A. and Aglietta, M. 1991. Responsiveness of highly enriched CFU-GM subpopulations from bone marrow, peripheral blood, and cord blood to hemopoietic growth inhibitors. Exp Hematol 19: 1084.Google Scholar
  13. 13.
    Bursuker, I., Neddermann, K. M., Petty, B. A., Schacter, B., Spitalny, G. L., Tepper, M. A. and Pasternak, R. D. 1992. In vivo regulation of hemopoiesis by transforming growth factor beta 1: Stimulation of GMCSF- and M-CSF-dependent murine bone marrow precursors. Exp Hematol 20: 431.PubMedGoogle Scholar
  14. 14.
    Kashihara, M., Ueda, M., Horiguchi, Y., Furukawa, F., Hanaoka, M. and Imamura, S. 1986. A monoclonal antibody specifically reactive to human Langerhans cells. J Invest Dermatol 87: 602.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Herbert Strobl
    • 1
  • Elisabeth Riedl
    • 1
  • Clemens Scheinecker
    • 1
  • Concha Bello-Fernandez
    • 1
  • Winfried F. Pickl
    • 2
  • Otto Majdic
    • 2
  • Walter Knapp
    • 2
  1. 1.Institute of Immunology Vienna International Research Cooperation Center (VIRCC) at SFIUniversity of ViennaViennaAustria
  2. 2.Institute of ImmunologyUniversity of ViennaViennaAustria

Personalised recommendations