Energy Localization in Small Biomolecules

  • Peter L. Christiansen
Chapter
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

A generalized discrete self-trapping model of biomolecules which allows adjustment of the degree of nonlinearity is investigated both classically and quantum mechanically. With two degrees of freedom, the system is closely related to the Feynman top. A dramatic effect of the nonlinearity on the localization of energy is observed.

Keywords

Canonical Variable Conjugate Momentum Jacobi Elliptic Function Ordinary Differential Equation System Pendulum Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.S. Davydov, Biology and Quantum Mechanics, Pergamon, Oxford (1981).Google Scholar
  2. 2.
    A.S. Davydov, Sov. Phys. Usp. 25 (1982) 899; Usp. Fiz. Nauk 138 (1982) 603.ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Eilbeck, P.S. Lomdahl, and A.C. Scott, Physica D 16 (1985) 318.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    A.C. Scott, P.S. Lomdahl, and J.C. Eilbeck, Chem. Phys. Lett. 113 (1985) 29.ADSCrossRefGoogle Scholar
  5. 5.
    A.C. Scott and J.C. Eilbeck, Chem. Phys. Lett. 132 (1986) 23.ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Scott and J.C. Eilbeck, Phys. Lett. A 119 (1986) 60.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A.C. Scott, L. Bernstein, and J.C. Eilbeck, J. Biol. Phys. 17 (1989) 1.MATHCrossRefGoogle Scholar
  8. 8.
    L.J. Bernstein, J.C. Eilbeck, and A.C. Scott, “The Quantum Theory of Local Modes in a Coupled System of Nonlinear Oscillators”, Nonlinear-ity (accepted).Google Scholar
  9. 9.
    A.C. Scott, L. Bernstein, and J.C. Eilbeck, “Local Modes in Molecules”, J. Molecular Liquids 41 (1989) 105.CrossRefGoogle Scholar
  10. 10.
    V.M. Kenkre and D.K. Campbell, Phys. Rev. B 34 (1986) 4959.ADSCrossRefGoogle Scholar
  11. 11.
    L. Cruzeiro-Hansson, P.L. Christiansen, and J.N. Elgin, Phys. Rev. B 37 (1988) 7896MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J.H. Jensen, P.L. Christiansen, J.N. Elgin, J.D. Gibbon, and O. Skovgaard, Phys. Lett. A 110 (1985) A29.CrossRefGoogle Scholar
  13. 13.
    S. De Filippo, M. Fusco Girard, and M. Salerno, Physica D 26 (1987) 411; ibid. D 29 (1988) 421.ADSMATHCrossRefGoogle Scholar
  14. 1A.
    H. Feddersen, R. Flesch, M. Salerno, and P.L. Christiansen, “Comment on ‘Theory of the Liapunov Exponents of Hamiltonian Systems and a Numerical Study of the Transition from Regular to Irregular Classical Motion’”, J. Chem. Phys. 92 (1990) (to appear).Google Scholar
  15. 15.
    S. De Filippo, M. Fusco Girard, and M. Salerno, “Avoided Crossing and Next Neighbour Spacings for the Quantum DST Equation” (to appear).Google Scholar
  16. 16.
    L. Cruzeiro-Hansson, H. Feddersen, R. Flesch, P.L. Christiansen, M. Salerno, and A.C. Scott, “Classical and Quantum Analysis of Chaos in the discrete Self-trapping Equation” (to appear).Google Scholar
  17. 17.
    A.C. Scott and P.L. Christiansen, “A generalized discrete self-trapping equation”, Physica Scripta (to appear).Google Scholar
  18. 18.
    P.L. Christiansen, “On a generalized discrete self-trapping equation”, J. Molecular Liquids 41 (1989) 113–121.CrossRefGoogle Scholar
  19. 19.
    A.C. Scott, “A non-resonant discrete self-trapping system”, Physica Scripta (to appear).Google Scholar
  20. 20.
    R.P. Feynman, F.L. Vernon, and R.W. Hellwarth, J. Appl. Phys. 28 (1957) A9.ADSCrossRefGoogle Scholar
  21. 21.
    P.F. Byrd and M.D. Friedman, “Handbook of Elliptic Integrals for Engineers and Physicists”, Springer, Berlin (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Peter L. Christiansen
    • 1
  1. 1.Laboratory of Applied Mathematical PhysicsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations