Self-Trapping in a Molecular Chain with Substrate Potential

  • A. V. Zolotaryuk
  • St. Pnevmatikos
  • A. V. Savin
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

We introduce here an improved version of the well known Davydov model for α-helix proteins and other hydrogen-bonded molecular chains, where the coupling of the chain with its atomic environment is taken into account via the introduction of an on-site harmonic potential for each molecule. For some standard sets of values for the physical parameters, the self-trapping mechanism occurs and two-component soliton excitations are generated in the molecular chain. The first component is the well known pulse excitonic (or electronic) soliton while the second component for the molecular vibrations is quite different. Due to the one-minimum on-site potential the vibrational component becomes a localized wave with zero asymptotic values. In the contrary of the initial Davydov model low energy exciton periodic solutions are also possible in this model. Both solitons and excitons are obtained here using a steepest descent numerical minimization technique. Their dynamics and stability are studied by numerical simulations of the discrete initial equations.

Keywords

Molecular Chain Soliton Solution Exciton State Peptide Group Minimization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Green, Science 181, 583, (1973); Ann. N. Y. Acad. Sci. 227, 6 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Davydov and N. I. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973); A. S. Davydov, J. Theor. Biol. 38, 559 (1973); and “Biology and Quantum Mechanics” (Pergamon, New York 1982).ADSCrossRefGoogle Scholar
  3. 3.
    A. S. Davydov and N. I. Kislukha, Zh. Eksp. Teor. Fiz. 71, 1090 (1976) [Sov. Phys. JETP 44, 571 (1976)]; A. S. Davydov, Usp. Fiz. Nauk 138, 603 (1982) Sov. Phys. Usp. 25, 898 (1982)].ADSGoogle Scholar
  4. 4.
    J. M. Hyman, D. W. McLaughlin and A. C. Scott, Physica 3D, 23 (1981); A. C. Scott, Phys. Rev. A26, 578 (1982); and 27, 2767 (1983); and Phys. Scr. 25, 651 (1982); L. MacNeil and A. C. Scott, Phys. Scr. 29, 284 (1984).ADSGoogle Scholar
  5. 5.
    G. Careri, in “Cooperative Phenomena”, eds H. Haken and M. Wagner. (Springer-Verlag, Berlin p. 391 (1973)).CrossRefGoogle Scholar
  6. 6.
    G. Careri, U. Buontempo, F. Carta, E. Gratton and A. C. Scott, Phys. Rev. Lett., 51, 304 (1983); G. Careri, U. Buontempo, F. Galluzzi, A.C. Scott, A. C. Gratton and E. Shyamsunder, Phys. Rev. B30, 4689 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Kuprievich, Physica 14D, 3, 395 (1985).MathSciNetADSGoogle Scholar
  8. 8.
    A. V. Zolotaryuk and A. V. Savin, unpublished (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. V. Zolotaryuk
    • 1
  • St. Pnevmatikos
    • 2
    • 3
  • A. V. Savin
    • 4
  1. 1.Institute for Theoretical PhysicsUkrSSR Academy of SciencesKievUSSR
  2. 2.Research Center of CreteHeraklio, CreteGreece
  3. 3.University of the AegeanKarlovassi, SamosGreece
  4. 4.Institute for Physico-Technical ProblemsMoscowUSSR

Personalised recommendations