Induction of Hepatic P-450 Isozymes

Evidence for Specific Receptors
  • Howard J. Eisen

Abstract

The mammalian liver is a major site of cytochrome P-450-mediated metabolism of endogenous and exogenous compounds. Multiple forms of P450 have been purified from rodent liver.1,2 Some of these P-450 proteins are expressed constitutively, while others are expressed only in response to specific hormonal or chemical stimuli. Examples of such chemical stimuli are polycyclic aromatic compounds, barbiturates, and steroids such as pregnenolone 16a-carbonitrile. A major goal of research has been to identify the cellular processes that “connect” a chemical stimulus to the expression of a specific P-450 protein. Cellular macromolecules have been identified that bind polycyclic aromatic compounds; among these macromolecules is an intracellular protein termed the Ah receptor.3,4 This protein may be involved directly in the regulation of expression of P-450 genes. Hepatic receptors for barbiturates and pregnenolone 16a-carbonitrile have not been identified. In this chapter, recent data are discussed that deal with the problem of identifying cellular “receptors” for these compounds.

Keywords

Glucocorticoid Receptor Cytosolic Fraction Mouse Mammary Tumor Virus Polycyclic Aromatic Compound Aryl Hydrocarbon Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, A. Y. H., and West, S. B., 1980, Multiplicity of mammalian microsomal cytochromes P-450, Pharmacol. Rev. 31: 277–295.Google Scholar
  2. 2.
    Mannering, G. J., 1981, Hepatic cytochrome P-450 linked drug-metabolizing systems, in: Concepts in Drug Metabolism, Part B ( P. Jenner and B. Testa, eds.). Dekker, New York.Google Scholar
  3. 3.
    Poland, A. P., Glover, E., and Kende, A. S.. 1976, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol: Evidence that the binding species is the receptor for the induction of aryl hydrocarbon hydroxylase, J. Biol. Chem. 251: 4936–4946.PubMedGoogle Scholar
  4. 4.
    Okey, A. B., Bondy, G. P., Mason, M. E., Nebert, D. W., Forster-Gibson, C., Muncan, J., and Dufresne, M. J., 1980, Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines, J. Biol. Chem. 255: 11415–11422.PubMedGoogle Scholar
  5. 5.
    Burch, J. B. E., and Weintraub, H., 1983, Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene, Cell 33: 6576.CrossRefGoogle Scholar
  6. 6.
    Negishi, M., Swan, D. C., Enquist, L. W., and Nebert, D. W., 1981, Isolation and characterization of a cloned DNA sequence associated with the murine Ah locus and a 3-methylcholanthrene-induced form of cytochrome P450, Proc. Natl. Acad. Sci. USA 78: 800–804.PubMedCrossRefGoogle Scholar
  7. 7.
    Mizukami, Y., Sogawa, K., Suwa, Y., Muramatsu, M., and Fujii-Kuriyama, Y., 1983, Gene structure of a phenobarbital-inducible cytochrome P-450 in rat liver, Proc. Natl. Acad. Sci. USA 80: 3958–3962.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar, A., Raphael, C., and Adesnik, M., 1983, Cloned cytochrome P450 cDNA: Nucleotide sequence and homology to multiple phenobarbital-induced mRNA species, J. Biol. Chem. 258: 11280–11284.PubMedGoogle Scholar
  9. 9.
    Leighton, J. K., DeBrunner-Vossbrinck, B. A., and Kemper, B., 1984, Isolation and sequence analysis of three cloned cDNAs for rabbit liver proteins that are related to rabbit cytochrome P-450 (form 2), the major phenobarbital-inducible form, Biochemistry 23: 204–210.PubMedCrossRefGoogle Scholar
  10. 10.
    Hardwick, J. P., Gonzalez, F. J., and Kasper, C. B., 1983, Cloning of DNA complementary to cytochrome P-450 induced by pregnenolone-16a-carbonitrile, J. Biol. Chem. 258: 10182–10186.PubMedGoogle Scholar
  11. 11.
    Morville, A. L., Thomas, P., Levin, W., Reik, L., Ryan, D. E., Raphael, C., and Adesnik, M., 1983, The accumulation of distinct mRNAs for the immunochemically related cytochromes P-450c and P-450d in rat liver following 3-methylcholanthrene treatment, J. Biol. Chem. 258: 3901–3906.PubMedGoogle Scholar
  12. 12.
    Negishi, M., and Nebert, D. W., 1981, Structural gene products of the Ah complex: Increases in large mRNA from mouse liver associated with cytochrome P1–450 induction by 3-methylcholanthrene, J. Biol. Chem. 256: 3085–3091.PubMedGoogle Scholar
  13. 13.
    Fagan, J. B., Pastewka, J. V., Park, S. S., Guengerich, F. P., and Gelboin, H. V., 1982, Identification and quantitation of a 2.0-kilobase messenger ribonucleic acid coding for 3-methylcholanthrene-induced cytochrome P-450 using cloned cytochrome P-450 complementary deoxyribonucleic acid, Biochemistry 24: 6574–6580.CrossRefGoogle Scholar
  14. 14.
    Negishi, M., Swan, D. C., Enquist, L. W., and Nebert, D. W., 1981, Isolation and characterization of cloned DNA sequence associated with the murine Ah locus and a 3-methylcholanthrene-induced form of cytochrome P-450, Proc. Natl. Acad. Sci. USA 78: 800–804.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawajiri, K., Gotch, O., and Tagashira, Y., 1984, Titration of mRNAs for cytochrome P-450c and P-450d under drug-inductive conditions in rat livers by their specific probes of cloned DNAs J. Biol. Chem. 259: 10145–10149.PubMedGoogle Scholar
  16. 16.
    Kimura, S., Gonzalez, F. J., and Nebert, D. W., 1984, Mouse cytochrome P3–450: Complete cDNA and amino acid sequence, Nucleic Acids Res. 12: 2917–2928.PubMedCrossRefGoogle Scholar
  17. 17.
    Okayama, H., and Berg, P., 1983, A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells, Mol. Cell. Biol. 3: 280–289.PubMedGoogle Scholar
  18. 18.
    Kimura, S., Gonzalez, F. J., and Nebert, D. W., 1984, The murine Ah locus, J. Biol. Chem. 259: 10705–10713.PubMedGoogle Scholar
  19. 19.
    Tukey, R. H., and Nebert, D. W., 1984, Structural gene products controlled by the Ah locus: Cloning, isolation and characterization of the mouse cytochrome P3–450 complementary DNA, Biochemistry 23: 6003–6008.PubMedCrossRefGoogle Scholar
  20. 20.
    Spradling, A. C., Digan, M. E., Mahowald, A. P., Scott, M., and Craig, E. A., 1980, Two clusters of genes for major chorion proteins of Drosophila melanogaster, Cell 19: 905–910.PubMedCrossRefGoogle Scholar
  21. 21.
    Poland, A. P., and Glover, E., 1975, Genetic expression of aryl hydrocarbon hydroxylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin: Evidence for a receptor mutation in genetically non-responsive mice, Mol. Pharmacol. 11: 389–398.Google Scholar
  22. 22.
    Poland, A. P., Glover, E., Robinson, J. R., and Nebert, D. W., 1974, Genetic expression of aryl hydrocarbon hydroxylase activity: Induction of monooxygenase activities and cytochrome P1–450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons, J. Biol. Chem. 249: 5599–5606.PubMedGoogle Scholar
  23. 23.
    Poland, A. P., and Knutson, J. C., 1982, 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity, Annu. Rev. Pharmacol. Toxicol. 22: 517–554.Google Scholar
  24. 24.
    Nebert, D. W., and Gelboin, H. V., 1969, The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states, Arch. Biochem. Biophys. 134: 76–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Eisen, H. J., Hannah, R. R., Legraverend, C., Okey, A. B., and Nebert, D. W., 1983, The Ah receptor: Controlling factor in the induction of drug-metabolizing enzymes by certain chemical carcinogens and other environmental pollutants, in: Biochemical Actions of Hormones, Volume X ( G. Litwack, ed.), Academic Press, New York, p. 227.Google Scholar
  26. 26.
    Poland, A. P., Glover, E., and Kende, A. S., 1976, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol: Evidence that the binding species is the receptor for the induction of aryl hydrocarbon hydroxylase, J. Biol. Chem. 251: 4936–4946.PubMedGoogle Scholar
  27. 27.
    Okey, A. B., Bondy, G. P., Mason, M. E., Kahl, G. F., Eisen, H. J., Guenthner, T. M., and Nebert, D. W., 1979, Regulatory gene product of the Ah locus: Characterization of the cytosolic inducer—receptor complex and evidence for its nuclear translocation, J. Biol. Chem. 254: 11636–11648.PubMedGoogle Scholar
  28. 28.
    Hannah, R. R., Nebert, D. W., and Eisen, H. J., 1981, Regulatory gene product of the Ah complex: Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene binding to several moieties in mouse liver cytosol, J. Biol. Chem. 256: 4584–4590.PubMedGoogle Scholar
  29. 29.
    Tukey, R. H., Hannah, R. R., Negishi, M., Nebert, D. W., and Eisen, H. J., 1982, The Ah locus: Correlation of intranuclear appearance of inducer—receptor complex with induction of cytochrome P1–450 mRNA, Cell 31: 275–284.PubMedCrossRefGoogle Scholar
  30. 30.
    Gonzalez, F. J., Tukey, R. H., and Nebert, D. W., 1984, Structural gene products of the Ah locus: Transcriptional regulation of cytochrome P1–450 and P3–450 mRNA levels by 3-methylcholanthrene, Mol. Pharmacol. 26: 117–121.PubMedGoogle Scholar
  31. 31.
    Okey, A. B., Bondy, G. P., Mason, M. E., Nebert, D. W., Forster-Gibson, C., Muncan, J., and Dufresne, M. J., 1980, Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachloro-p-dioxin in continuous cell culture lines, J. Biol. Chem. 255: 11415–11422.PubMedGoogle Scholar
  32. 32.
    Whitlock, J. P., and Galaezzi, D. R., 1984, 2,3,7,8-Tetrachlorodibenzo-p-dioxin receptors in wild type and variant mouse hepatoma cells, J. Biol. Chem. 259: 980–985.Google Scholar
  33. 33.
    Welshons, W. V., Lieberman, M. E., and Gorski, J., 1984, Nuclear localization of unoccupied oestrogen receptors, Nature 307: 747–749.PubMedCrossRefGoogle Scholar
  34. 34.
    Israel, D., and Whitlock, J. P., 1983, Induction of mRNA specific for cytochrome P1450 in wild type and variant mouse heptoma cells, J. Biol. Chem. 258: 10390–10394.PubMedGoogle Scholar
  35. 35.
    Miller, A. G., Israel, D., and Whitlock, J. P., 1983, Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metab-olizitig enzyme activity, J. Biol. Chem. 258: 3523–3527.PubMedGoogle Scholar
  36. 36.
    Hankinson, 0., 1981, Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase, Proc. Natl. Acad. Sci. USA 76: 373–376.CrossRefGoogle Scholar
  37. 37.
    Hankinson, 0., 1981, Evidence that benzo(a)pyrene-resistant aryl hydrocarbon hydroxylase-deficient variants of mouse hepatoma line Hepa-1 are mutational in origin, Somatic Cell Genet. 7: 373–388.CrossRefGoogle Scholar
  38. 38.
    Hankinson, O., 1983, Dominant and recessive aryl hydrocarbon hydroxylase-deficient mutants of mouse hepatoma line Hepa-1, and assignment of the recessive mutants to three complementation groups, Somatic Cell Genet. 9: 497–514.PubMedCrossRefGoogle Scholar
  39. 39.
    Legraverend, C., Hannah, R. R., Eisen, H. J., Owens, I. S., Nebert, D. W., and Hankinson, O., 1982, Regulatory gene product of the Ah locus, J. Biol. Chem. 257: 64026407.Google Scholar
  40. 40.
    Hankinson, O., Anderson, R. D., Birren, B., Sander, F., Negishi, M., and Nebert, D. W., 1985, Mutations affecting the regulation of transcription of the cytochrome P1–450 gene in mouse Hepa-1 cell cultures, J. Biol. Chem. 260: 1790–1795.PubMedGoogle Scholar
  41. 40.
    Legraverend, C., Hannah, R. R., Eisen, H. J., Owens, I. S., Nebert, D. W., and Hankinson, 0., 1982, Regulatory gene product of the Ah locus, J. Biol. Chem. 257: 6402–6407.PubMedGoogle Scholar
  42. 41.
    Schuetz, E. G., Wrighton, S. A., Barwick, J. L., and Guzelian, P. S., 1984, Induction of cytochrome P-450 by glucocorticoids in rat liver. I. Evidence that glucocorticoids and pregnenolone 16a-carbonitrile regulate de novo synthesis of a common form of cytochrome P-450 in cultures of adult rat hepatocytes and in the liver in vivo. J. Biol. Chem. 259: 1999–2006.Google Scholar
  43. 42.
    Schuetz, E. G., and Guzelian, P. S., 1984, Induction of cytochrome P-450 by glucocorticoids in rat liver. II. Evidence that glucocorticoids regulate induction of cytochrome P-450 by a nonclassical receptor mechanism, J. Biol. Chem. 259: 2007–2012.PubMedGoogle Scholar
  44. 43.
    Munck, A., and Holbrook, N., 1984, Glucocorticoid receptors in rat thymic lymphocytes: A cyclic model, J. Biol. Chem. 259: 820–831.PubMedGoogle Scholar
  45. 44.
    Gonzalez, F. J., and Kasper, C. B., 1982, Cloning of DNA complementary to rat liver NADPH-cytochrome c (P-450). Oxidoreductase and cytochrome P-450b mRNAs: Evidence that phenobarbital augments transcription of specific genes, J. Biol. Chem. 257: 5962–5968.PubMedGoogle Scholar
  46. 45.
    Atchison, M., and Adesnik, M., 1983, A cytochrome P-450 multigene family: Characterization of a gene activated by phenobarbital administration, J. Biol. Chem. 258: 11285–11295.PubMedGoogle Scholar
  47. 46.
    Hardwick, J., Gonzalez, F. J., and Kasper, C. B., 1983, Transcriptional regulation of rat liver epoxide hydratase, NADPH-cytochrome P-450 oxidoreductase, and cytochrome P-450b genes by phenobarbital, J. Biol. Chem. 258: 8081–8085.PubMedGoogle Scholar
  48. 47.
    Poland, A., Mak, I., Glover, E., Boatman, R. J., Ebetino, F. H., and Kende, A. S., 1980, Bis[2-(3,5-dichloropyridyloxy)]benzene, a potent phenobarbital-like inducer of microsomal monooxygenase activity, Mol. Pharmacol. 18: 571–580.PubMedGoogle Scholar
  49. 48.
    Poland, A., Mak, I., and Glover, E., 1981, Species differences in responsiveness to 1,4-bis[2(3,5-dichloropyridyloxy)]-benzene, a potent phenobarbital-like inducer of microsomal monooxygenase activity, Mol. Pharmacol. 20: 442–450.PubMedGoogle Scholar
  50. 49.
    Tierney, B., and Bresnick, E., 1981, Differences in the binding of 3-methylcholanthrene and phenobarbital to rat liver cytosolic and nuclear protein fractions, Arch. Biochem. Biophys. 210: 729–739.PubMedCrossRefGoogle Scholar
  51. 50.
    Olsen, R. W., Wong, E. H., Stauber, G. B., and King, R. G., 1984, Biochemical pharmacology of the y-aminobutyric acid receptor/ionophore protein, Fed. Proc. 43: 2773–2778.PubMedGoogle Scholar
  52. 51.
    King, R. G., and Olsen, R. W., 1984, Solubilization of convulsant/barbiturate binding activity on the y-aminobutyric acid/benzodiazepine receptor complex, Biochem. Biophys. Res. Commun. 119: 530–536.PubMedCrossRefGoogle Scholar
  53. 52.
    Nebert, D. W., Hankinson, O., and Eisen, H. J., 1984, The Ah receptor: Binding specificity only for foreign chemicals, Biochem. Pharmacol. 33: 917–924.PubMedCrossRefGoogle Scholar
  54. 53.
    Van Gurp, J. R., and Hankinson, 0., 1983, Single-step phototoxic selection procedure for isolating cells that possess aryl hydrocarbon hydroxylase, Cancer Res. 43: 6031–6038.PubMedGoogle Scholar
  55. 54.
    Cooper, C. S., Park, M., Blair, D. G., Tainsky, M. A., Huebner, K., Croce, C. M., and Vande Woude, G. F., 1984, Molecular cloning of a new transforming gene from a chemically transformed human cell line, Nature 311: 29–33.PubMedCrossRefGoogle Scholar
  56. 55.
    Newman, S., and Guzelian, P. S., 1982, Stimulation of de novo synthesis of cytochrome P-450 by phenobarbital in primary nonproliferating cultures of adult rat hepatocytes, Proc. Natl. Acad. Sci. USA 79: 2922–2926.PubMedCrossRefGoogle Scholar
  57. 56.
    Karin, M., Haslinger, A., Holtgreve, H., Richards, R. I., Krauter, P., Westphal, H. M., and Beato, M., 1984, Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene, Nature 308: 513–518.PubMedCrossRefGoogle Scholar
  58. 57.
    Mayo, K. E., Warren, R., and Palmiter, R. D., 1982, The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells, Cell 29: 99–108.PubMedCrossRefGoogle Scholar
  59. 58.
    Yamamoto, K. R., and Alberts, B. M., 1976, Steroid receptors: elements for modulation of eukaryotic transcription, Annu. Rev. Biochem. 45: 721–746.PubMedCrossRefGoogle Scholar
  60. 59.
    Payvar, F., Wrange, O., Carlstedt-Duke, J., Okret, S., Gustafsson, J. A., and Yamamoto, K. R., 1981, Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo, Proc. Natl. Acad. Sci. USA 78: 6628–6632.PubMedCrossRefGoogle Scholar
  61. 60.
    Payvar, F., DeFranco, D., Firestone, G. L., Edgar, B., Wrange, G., Okret, S., Gustafsson, J. A., and Yamamoto, K. R., 1983, Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region, Cell 35: 381–392.PubMedCrossRefGoogle Scholar
  62. 61.
    Scheidereit, C., Geisse, S., Westphal, H. M., and Beato, M., 1983, The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus, Nature 304: 749–752.PubMedCrossRefGoogle Scholar
  63. 62.
    Pfahl, M., 1982, Specific binding of the glucocorticoid—receptor complex to the mouse mammary tumor proviral promoter region, Cell 31: 475–482.PubMedCrossRefGoogle Scholar
  64. 63.
    Weintraub, H., 1983, A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin, Cell 32: 1191–1203.PubMedCrossRefGoogle Scholar
  65. 64.
    Becker, P., Renkawitz, R., and Schutz, G., 1984, Tissue-specific DNaseI hypersensitive sites in the 5’-flanking sequences of the tryptophan oxygenase and the tyrosine aminotransferase genes, EMBO J. 3: 2015–2020.PubMedGoogle Scholar
  66. 65.
    Wu, C., 1984, Two protein-binding sites in chromatin implicated in the activation of heat-shock genes, Nature 309: 229–234.PubMedCrossRefGoogle Scholar
  67. 66.
    Siebenlist, U., Hennighausen, L, Battey, J., and Leder, P., 1984, Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma, Cell 37: 381–391.PubMedCrossRefGoogle Scholar
  68. 67.
    Ucker, D. S., and Yamamoto, K. R., 1984, Early events in the stimulation of mammary tumor RNA synthesis by glucocorticoids: Novel assays of transcription rates, J. Biol. Chem. 259: 7416–7420.PubMedGoogle Scholar
  69. 68.
    Tolunay, H. E., Yang, L., Anderson, W. F., and Safer, B., 1984, Isolation of an active transcription initiation complex from HeLa cell-free extract, Proc. Natl. Acad. Sci. USA 81: 5916–5920.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Howard J. Eisen
    • 1
  1. 1.Laboratory of Developmental Pharmacology, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations