Cytochrome Oxidase and Neuroanatomical Patterns
Abstract
Cytochrome oxidase (C.O.) histochemistry has proved to be an excellent method for the identification of neuroanatomical patterns. In some cases, C.O. staining has led to the discovery of completely novel patterns; the best known examples are the puffs (or blobs) in primate visual area V1, and the stripes in visual area V2. In other cases, C.O. staining has revealed modules associated with cytoarchitectural patterns that were previously known but whose modular organization was not fully appreciated, such as the periodic cell clusters in entorhinal cortex layers 2–3. In developmental neuroanatomy, C.O. histochemistry has been used to demonstrate emerging patterns (the barrelettes of the brainstem trigeminal complex) before they become visible by other methods. In addition, C.O. is a useful marker for detecting neuroanatomical changes caused by environmental manipulations, or by genetic defects in spontaneous or targeted mutant animals. Since C.O. is present in all brain cells, the sensitivity of the histochemical method for showing neuroanatomical patterns may seem paradoxical. In this chapter, I will attempt to explain the remarkable correspondence between C.O. activity and patterns in the brain by delineating the links between C.O. activity, neuronal functional activity, synaptic inputs, parallel pathways, and modular processing.
Keywords
Olfactory Bulb Cytochrome Oxidase Superior Colliculus Entorhinal Cortex Tangential SectionPreview
Unable to display preview. Download preview PDF.
References
- Amaral, D. G., Insausti, R., and Cowan, W. M. (1987). The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J. Comp. Neurol., 264, 326–355.PubMedCrossRefGoogle Scholar
- Belford, G. R., and Killackey, H. P. (1979). The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J. Comp. Neurol., 188, 63–74.PubMedCrossRefGoogle Scholar
- Bulfone, A., Smiga, S. M., Shimamura, K., Peterson, A., Puelles, L., and Rubenstein, J. L. R. (1995). T-brain-l: A homolog of Brachyuiy whose expression defines molecularly distinct domains within the cerebral cortex. Neuron, 15, 63–78.Google Scholar
- Carboni, A. A., Lavelle, W. G., Barnes, C. L., and Cipolloni, P. B. (1990). Neurons of the lateral entorhinal cortex of the rhesus monkey: A Golgi, histochemical, and immunocytochemical characterization. J. Comp. Neurol., 291, 583–608.PubMedCrossRefGoogle Scholar
- Carroll, E. W., and Wong-Riley, M. T. T. (1984). Quantitative light and electron microscopic analysis of cyto- chrome oxidase-rich zones in the striate cortex of the squirrel monkey. J. Comp. Neurol., 222, 1–17.PubMedCrossRefGoogle Scholar
- Cases, O., Vitalis, T., Seif, 1., De Maeyer, E., Sotelo, C., and Gaspar, P. (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: Role of a serotonin excess during the critical period. Neuron, 16, 297–307.PubMedCrossRefGoogle Scholar
- Catania, K. C., Northcutt, R. G., Kaas, J. H., and Beck, P. D. (1993). Nose stars and brain stripes. Nature, 364, 493.PubMedCrossRefGoogle Scholar
- DeYoe, E. A., and Van Essen, D. C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature, 317, 58–61.PubMedCrossRefGoogle Scholar
- DeYoe, E. A., and Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends Neuro-sci., 11, 219–226.Google Scholar
- DeYoe, E. A., Trusk, T. C., and Wong-Riley, M. T. T. (1995). Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey. Vis. Neurosci., 12, 629–639.PubMedCrossRefGoogle Scholar
- Dulac, C. (1997). How does the brain smell? Neuron, 19, 477–480.PubMedCrossRefGoogle Scholar
- Erecinska, M., and Silver, 1. A. (1989). ATP and brain function. J. Cerebr. Blood Flow Metab., 9, 2–19.CrossRefGoogle Scholar
- Gerfen, C. R. (1992). The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci., 15, 133–139.PubMedCrossRefGoogle Scholar
- Gravel, C., Eisenman, L. M., Sasseville, R., and Hawkes, R. (1987). Parasagittal organization of the rat cerebellar cortex: Direct correlation between antigenic Purkinje cell bands revealed by mabQ 113 and the organization of the olivocerebellar projection. J. Comp. Neurol., 265, 294–310.PubMedCrossRefGoogle Scholar
- Hess, D. T., and Voogd, J. (1986). Chemoarchitectonic zonation of the monkey cerebellum. Brain Res., 369, 383–387.PubMedCrossRefGoogle Scholar
- Hevner, R. F., and Wong-Riley, M. T. T. (1989). Brain cytochrome oxidase: purification, antibody production, and immunohistochemical/histochemical correlations in the CNS. J. Neurosci., 9, 3884–3898.PubMedGoogle Scholar
- Hevner, R. F., and Wong-Riley, M. T. T. (1992). Entorhinal cortex of the human, monkey, and rat: metabolic map as revealed by cytochrome oxidase. J. Comp. Neurol., 326, 451–469.PubMedCrossRefGoogle Scholar
- Hevner, R. F., Duff, R. S., and Wong-Riley, M. T. T. (1992). Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na’,K’-ATPase. Neurosci. Lett., 138, 188–192.PubMedCrossRefGoogle Scholar
- Hevner, R. F., Liu, S., and Wong-Riley, M. T. T. (1995). A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric, and biochemical studies. Neuroscience, 65, 313–342.PubMedCrossRefGoogle Scholar
- Hevner, R. F., Smiga, S., Bulfone, A., Meneses, J. J., Pedersen, R. A., and Rubenstein, J. L. R. (1996). Targeted mutation of the Tbr-I gene causes abnormal development of the cerebral cortex and olfactory bulb. Soc. Neurosci. Ahstr., 22, 1011.Google Scholar
- Hevner, R. F., Smiga, S., Bulfone, A., Meneses, J. J., Pedersen. R. A., and Rubenstein, J. L. R. (1997). Cerebral cortex lamination and extrinsic connections are disrupted in mice with targeted mutation of Thr-1 gene. Soc. Neurosci. Abstr., 23, 80.Google Scholar
- Horton, J. C., and Hubel, D. H. (1981). Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature, 292, 762–764.PubMedCrossRefGoogle Scholar
- Hubel, D. H. (1988). Eye, Brain, and Vision. Scientific American Library, W. H. Freeman and Co., New York. Insausti, R., Amaral, D. G., and Cowan, W. M. (1987a). The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neural., 264, 356–395.Google Scholar
- Insausti, R., Amaral, D. G., and Cowan, W. M. (1987b). The entorhinal cortex of the monkey: Ill. Subcortical afferents. J. Comp. Neurol., 264, 396–408.PubMedCrossRefGoogle Scholar
- Kageyama, G. H., and Wong-Riley, M. T. T. (1982). Histochemical localization of cytochrome oxidase in the hippocampus: correlation with specific neuronal types and afferent pathways. Neuroscience, 7, 2337–2361.PubMedCrossRefGoogle Scholar
- Kennedy, C., Des Rosiers, M. H., Sakurada, O., Shinohara, M., Reivich, M., Jehl, J. W., and Sokoloff, L. (1976). Metabolic mapping of the primary visual system of the mokey by means of the autoradiographic [14C]deoxyglucose technique. Proc. Natl. Acad. Sci. USA, 73, 4230–4234.PubMedCrossRefGoogle Scholar
- Kuljis, R. O., and Rakic, P. (1990). Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proc. Natl. Acad. Sci. USA, 87, 5303–5306.PubMedCrossRefGoogle Scholar
- Leclerc, N., Doré, L., Parent, A., and Hawkes, R. (1990). The compartmentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res., 506, 70–78.PubMedCrossRefGoogle Scholar
- Lieke, E. E., Frostig, R. D., Arieti, A., Ts’o, D. Y., Hildesheim, R., and Grinvald, A. (1989). Optical imaging of cortical activity: real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annu. Rev. Physiol., 51, 543–559.PubMedCrossRefGoogle Scholar
- Livingstone, M. S., and Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci., 4, 309–356.PubMedGoogle Scholar
- Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.PubMedCrossRefGoogle Scholar
- Ma, R. M. (1991a). The barrelettes-architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization. J. Comp. Neural., 309, 161–199.CrossRefGoogle Scholar
- Ma, P. M. (1991b). Barrelettes-architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. IL Normal post-natal development. J. Comp. Neurol., 327, 376–397.CrossRefGoogle Scholar
- Nie, F., and Wong-Riley, M. T. T. (1996). Differential glutamatergic innervation in cytochrome oxidase-rich and–poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J. Comp. Neurol., 369, 571–590.PubMedCrossRefGoogle Scholar
- Nomura, S., Itoh, K., Sugimoto, T., Yasui, Y., Kamiya, H., and Mizuno, N. (1986). Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat. J. Comp. Neurol., 253, 121–133.PubMedCrossRefGoogle Scholar
- Olavarria, J., and Van Sluyters, R. C. (1985). Unfolding and flattening the cortex of gyrencephalic brains. J. Neurosci. Meth., 15, 191–202.CrossRefGoogle Scholar
- Pomeroy, S. L., LaMantia, A. S., and Purves, D. (1990) Postnatal construction of neural circuitry in the mouse olfactory bulb. J. Neurosci., 10, 1952–1966.Google Scholar
- Purves, D., and LaMantia, A. (1993). Development of blobs in the visual cortex of macaques. J. Comp. Neurol., 334, 169–175.PubMedCrossRefGoogle Scholar
- Purves, D., Riddle, D. R., and LaMantia, A.-S. (1992). Iterated patterns of brain circuitry (or how the cortex gets it spots). Trends Neurosci., 15, 362–368.PubMedCrossRefGoogle Scholar
- Riddle, D., Richards, A., Zsuppan, F., and Purves, D. (1992). Growth of the rat somatic sensory cortex and its constituent parts during postnatal development. J. Neurosci., 12, 3509–3524.PubMedGoogle Scholar
- Saunders, R. C., and Rosene, D. L. (1988). A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J. Cotnp. Neural., 271, 153–184.CrossRefGoogle Scholar
- Sefton, A. J., and Dreher, B. Visual system. In G. Paxinos (Ed.), The Rat Nervous System, 2d ed., Academic Press, San Diego, 1995, pp. 833–898.Google Scholar
- Silverman, M. S., and Tootell, R. B. H. (1987). Modified technique for cytochrome oxidase histochemistry: increased staining intensity and compatibility with 2-deoxyglucose autoradiography. J. Neurosci. Meth., 19, 1–10.CrossRefGoogle Scholar
- Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada. O., and Shinohara, M. (1977). The [“Cldeoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem., 28, 897–916.Google Scholar
- Squire, L. R., and Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.PubMedCrossRefGoogle Scholar
- Steward, O., and Scoville, S. A. (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol., 169, 347–370.PubMedCrossRefGoogle Scholar
- Tootell, R. B. H., and Silverman, M. S. (1985). Two methods for flat-mounting cortical tissue. J. Neurosci. Meth., 15, 177–190.CrossRefGoogle Scholar
- Tootell, R. B., Silverman, M. S., DeValois, R. L., and Jacobs, G. H. (1983). Functional organization of the second cortical visual area (V2) in the primate. Science, 220, 737–739.PubMedCrossRefGoogle Scholar
- Tootell, R. B. H, Hamilton, S. L., Silverman, M. S., and Switkes, E. (1988a). Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions. J. Neurosci., 8, 1500–1530.PubMedGoogle Scholar
- Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., DeValois, R. L., and Switkes, E. (1988b). Functional anatomy of macaque striate cortex. III. Color. J. Neurosci., 8, 1569–1593.PubMedGoogle Scholar
- Tootell, R. B. H., Hamilton, S. L., and Switkes, E. (1988c). Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J. Neurosci., 8, 1594–1609.PubMedGoogle Scholar
- Tootell, R. B. H., and Hamilton, S. L. (1989). Functional anatomy of the second visual area (V2) in the macaque. J. Neurosci., 9, 2620–2644.PubMedGoogle Scholar
- Trusk, T. C., Kaboord, W. S., and Wong-Riley, M. T. T. (1990). Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome-oxidase reactivity in supragranular puffs of adult macaque striate cortex. Vis. Neurosci., 4, 185–204.PubMedCrossRefGoogle Scholar
- Ungerleider, L. G., and Mishkin, M. Two cortical visual systems. In D. G. Ingle, M. A. Goodale, and R. J. Q. Mansfield (Eds.), Analysis of Visual Behavior, MIT Press, Cambridge, MA, 1982, pp. 549–586.Google Scholar
- Van der Loos, H. (1976). Barreloids in mouse somatosensory thalamus. Neurosci. Lett., 2, 1–6.CrossRefGoogle Scholar
- Van Essen D. C., and Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10.PubMedCrossRefGoogle Scholar
- Voogd, J. Cerebellum. In G. Paxinos (Ed.), The Rat Nervous System, 2d ed., Academic Press, San Diego, 1995, pp. 309–350.Google Scholar
- Wallace, M. N. (1986). Spatial relationship of histochemically demonstrable patches in the mouse superior colliculus. Exp. Brain Res., 62, 241–249.PubMedCrossRefGoogle Scholar
- Welker, E., Armstrong-James, M., Bronchti, G., Ourednik, W., Gheorghita-Baechler, F., Dubois, R., Guernsey, D. L., Van der Loos, H., and Neumann, P. E. (1996). Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science, 271, 1864–1867.PubMedCrossRefGoogle Scholar
- Wiener, S. I. (1986). Laminar distribution and patchiness of cytochrome oxidase in the mouse superior colliculus. J. Comp. Neurol., 244, 137–148.PubMedCrossRefGoogle Scholar
- Witter, M. R, and Amaral, D. G. (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J. Comp. Neurol., 307, 437–459.PubMedCrossRefGoogle Scholar
- Wong-Riley, M. T. T. (1976). Endogeous peroxidatic activity in brain stem neurons as demonstrated by their staining with diaminobenzidine in normal squirrel monkeys. Brain Res., 108, 257–277.PubMedCrossRefGoogle Scholar
- Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res., 171, 11–28.PubMedCrossRefGoogle Scholar
- Wong-Riley, M. T. T. (1989). Cytochrome oxidase: an endogenous metabolic marker for neuronal functional activity. Trends Neurosci., 12, 94–101.PubMedCrossRefGoogle Scholar
- Wong-Riley, M., and Carroll, E. W. (1984a). Quantitative light-and electron-microscopic analysis of cytochrome oxidase-rich zones in V I1 prestriate cortex of the squirrel monkey. J. Comp. Neurol., 222, 18–37.PubMedCrossRefGoogle Scholar
- Wong-Riley, M., and Carroll, E. W. (1984b). Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature, 307, 262–264.PubMedCrossRefGoogle Scholar
- Wong-Riley, M. T. T., and Welt, C. (1980). Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc. Natl. Acad. Sci. USA, 77, 2333–2337.PubMedCrossRefGoogle Scholar
- Woolsey, T. A., and van der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17, 205–242.PubMedCrossRefGoogle Scholar
- Yuste, R., and Simons, D. (1997). Barrels in the desert: the Sde Boker workshop on neocortical circuits. Neuron, 19, 231–237.PubMedCrossRefGoogle Scholar