Abstract
Kondo insulators are compounds with small-gap semiconductor properties. A Mondo hole is the charge neutral substitution of a rare earth or actinide atom by a nonmagnetic analog. Kondo holes break the translational invariance and give rise to boundstates in the gap, which pin the Fermi level and determine the magnetic, thermal and transport properties. A finite concentration of Kondo holes generates an impurity hand inside the gap of the semiconductor. For small concentration, c, the height and width of the impurity band in the density of states are proportional to √c. We consider arbitrary clusters of Kondo holes embedded into the symmetric non-degenerate Anderson lattice with nearest-neighbor tight-binding conduction band on a simple cubic lattice. Properties of boundstates at the Fermi level are related to the connectivity of the cluster. The impurity band undergoes an insulator-metal transition, which is reduced to the classical site percolation of Kondo holes with first, second and fourth nearest-neighbor bonds. The critical percolation concentration is estimated at c cr = 0.10. Of great interest are also the consequences of doping, ligand defects and the effect of Mondo holes on magnetic instabilities. Within a KotliarRuckenstein mean-field approximation the Mondo insulator is unstable to long-range antiferromagnetism for U > U c and to ferromagnetism in sufficiently large fields. The paramagnetic-antiferromagnetic phase boundary is re-entrant as a. function of the concentration of Kondo holes.
Keywords
Spectral Weight Impurity Band Impurity Site Kondo Lattice Magnetic InstabilityPreview
Unable to display preview. Download preview PDF.
References
- 1.See e.g., Valence Instabilities,edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982).Google Scholar
- 2.T. Takabatake, Y. Nakazawa, and M. Ishikawa, Jim. J. Appl. Phys. Suppl. 26, 547 (1987).CrossRefGoogle Scholar
- M. F. Hundley et al., Physica B 171, 254 (1991).Google Scholar
- G. P. Meisner et al., J. Appl. Phys. 57, 3075 (1985).Google Scholar
- 5.M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 429 (1985).CrossRefGoogle Scholar
- N. Bykowetz et al., J. Appl. Phys. 63, 4127 (1988).Google Scholar
- Z. Schlesinger et al., Phys. Rev. Lett. 71, 1748 (1993).Google Scholar
- 8.J. Neuenschwander and P. Wachter, Phys. Rev. B 41, 12693 (1990).CrossRefGoogle Scholar
- 9.B. Bucher, P. Steiner, and P. Wachter, Phys. Rev. Lett. 67, 2717 (1991).CrossRefGoogle Scholar
- 10.P. Wachter, A. Jung, and P. Steiner, Phys. Rev. B 51, 5542 (1995).CrossRefGoogle Scholar
- 11.G. Aeppli and Z. Fisk, Comments Cond. Matt. Phys. 16, 155 (1992).Google Scholar
- A. Severing et al., Phys. Rev. B 44, 6832 (1991).Google Scholar
- T. Nanba et al., Physica B 186–188, 440 (1993).Google Scholar
- 14.P. Nyhus, S. L. Cooper, Z. Fisk, and J. Sarrao, Phys. Rev. B 52, 14308 (1995).CrossRefGoogle Scholar
- 15.B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).CrossRefGoogle Scholar
- 16.N. B. Brandt and V. V. Moschalkov, Adv. Phys. 33, 373 (1984).CrossRefGoogle Scholar
- 17.R. Sollie and P. Schlottmann, J. Appl. Phys. 69, 5478 (1991).CrossRefGoogle Scholar
- 18.R. Sollie and P. Schlottmann, J. Appl. Phys. 70, 5803 (1991).CrossRefGoogle Scholar
- 19.P. Schlottmann, Phys. Rev. B 46, 998 (1992).CrossRefGoogle Scholar
- 20.P. Schlottmann, Physica B 186–188, 375 (1993).CrossRefGoogle Scholar
- 21.P. Schlottmann and C. S. I.Iellberg, J. Appl. Phys. 79, 6414 (1996).CrossRefGoogle Scholar
- A. Millis, in Physical Phenomena at High Magnetic Fields,edited by E. Manousakis et al.,(Addison-Wesley, 1992), p.146.Google Scholar
- 23.P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).CrossRefGoogle Scholar
- 24.C. Sanchez-Castro, K. S. Bedell, and B. R. Cooper, Phys. Rev. B 47, 6879 (1993).CrossRefGoogle Scholar
- 25.P. S. Riseborough, Physica B 199–200, 466 (1994).CrossRefGoogle Scholar
- 26.S. Doniach, C. Fu, and S. A. Trugman, Physica B 199–200, 450 (1994).CrossRefGoogle Scholar
- 27.J. Karbowski, Phys. Rev. B 54, 728 (1996).CrossRefGoogle Scholar
- 28.C. M. Varma, Phys. Rev. B 50, 9952 (1994).CrossRefGoogle Scholar
- 29.K. Ueda, M. Sigrist, H. Tsunetsugu, and T. Nishino, Physica B 194–196, 255 (1994).Google Scholar
- 30.T. Kasuya, Europhys. Lett. 26, 277 (1994).CrossRefGoogle Scholar
- 31.J. Pérez-Conde and P. Pfeuty, Physica B 223–224, 438 (1996).CrossRefGoogle Scholar
- 32.G. Kotliar and A. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).CrossRefGoogle Scholar
- 33.V. Doria and P. Schlottmann, Phys. Rev. B 46, 10800 (1992).CrossRefGoogle Scholar
- 34.V. Doria and P. Schlottmann, J. Appl. Phys. 73, 5400 (1993).CrossRefGoogle Scholar
- 35.V. Doria and P. Schlottmann, Phys. Rev. B 47, 5095 (1993).CrossRefGoogle Scholar
- 36.P. Schlottmann, Phys. Rev. B 54, 12324 (1996).CrossRefGoogle Scholar
- 37.S. Doniach and P. Fazekas, Phil. Mag. B 65, 1171 (1992).CrossRefGoogle Scholar
- 38.P. Schlottmann, Physica B 206–207, 816 (1995).CrossRefGoogle Scholar
- 39.P. Schlottmann, Physica B 223–224, 435 (1996).CrossRefGoogle Scholar
- 40.W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)CrossRefGoogle Scholar
- W. Metzner, Z. Phys. B 77, 253 (1989)CrossRefGoogle Scholar
- E. Müller-Hartmann, ibid. 76, 211 (1989)Google Scholar
- H. Schweitzer and G. Czycholl, Solid State Commun. 69, 171 (1989).CrossRefGoogle Scholar
- 41.D. S. Gaunt and A. J. Guttmann, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green, (Academic Press, London, 1974),VOL. 3 p. 181.Google Scholar
- 42.D. Stauffer, Introduction to Percolation Theory ( Taylor and Francis, London, 1985 ).CrossRefGoogle Scholar
- 43.P. J. Reynolds, H. E. Stanley and W. Klein, Phys. Rev. B 21, 1223 (1980).CrossRefGoogle Scholar
- 44.R. Freytag and J. Keller, Z. Phys. B 80, 241 (1990).CrossRefGoogle Scholar
- 45.S. Wermbter, K. Sabel and G. Czycholl, Phys. Rev. B 53, 2528 (1996).CrossRefGoogle Scholar
- 46.P. Schlottmann, J. Appl. Phys. 75, 7044 (1994).CrossRefGoogle Scholar
- 47.S. E. Barnes, J. Phys. F 6, 1375 (1976); 7, 2637 (1977).Google Scholar
- 48.P. Coleman, Phys. Rev. B 29, 3035 (1984).CrossRefGoogle Scholar
- 49.N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983).CrossRefGoogle Scholar
- 50.C. A. Balseiro, M. Avignon, A. G. Rojo, and B. Alascio, Phys. Rev. Lett. 62, 2624 (1989).CrossRefGoogle Scholar
- 51.A. Sudbo and A. Houghton, Phys. Rev. B 42, 4105 (1990).CrossRefGoogle Scholar
- 52.T. Li, P. Wölfle, and P. Hirschfeld, Phys. Rev. B 40, 6817 (1989)CrossRefGoogle Scholar
- 53.T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 99: 5 (1985).Google Scholar
- M. Kasaya et al.,in Valence Fluctuations in Solids,edited by L. M. Falicov, W. Hanke and M. B. Maple (North-Holland, Amsterdam, 1981), p.251.Google Scholar
- F. G. Aliev et al., Physica B 163 358 (1990).Google Scholar
- S. Nishigori et al., Physica B 186–188, 406 (1993).Google Scholar
- 57.A. Houghton, N. Read, and H. Won, Phys. Rev. B 35, 5123 (1987).CrossRefGoogle Scholar