Impurity States in Kondo Insulators

  • P. Schlottmann

Abstract

Kondo insulators are compounds with small-gap semiconductor properties. A Mondo hole is the charge neutral substitution of a rare earth or actinide atom by a nonmagnetic analog. Kondo holes break the translational invariance and give rise to boundstates in the gap, which pin the Fermi level and determine the magnetic, thermal and transport properties. A finite concentration of Kondo holes generates an impurity hand inside the gap of the semiconductor. For small concentration, c, the height and width of the impurity band in the density of states are proportional to √c. We consider arbitrary clusters of Kondo holes embedded into the symmetric non-degenerate Anderson lattice with nearest-neighbor tight-binding conduction band on a simple cubic lattice. Properties of boundstates at the Fermi level are related to the connectivity of the cluster. The impurity band undergoes an insulator-metal transition, which is reduced to the classical site percolation of Kondo holes with first, second and fourth nearest-neighbor bonds. The critical percolation concentration is estimated at c cr = 0.10. Of great interest are also the consequences of doping, ligand defects and the effect of Mondo holes on magnetic instabilities. Within a KotliarRuckenstein mean-field approximation the Mondo insulator is unstable to long-range antiferromagnetism for U > U c and to ferromagnetism in sufficiently large fields. The paramagnetic-antiferromagnetic phase boundary is re-entrant as a. function of the concentration of Kondo holes.

Keywords

Spectral Weight Impurity Band Impurity Site Kondo Lattice Magnetic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g., Valence Instabilities,edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982).Google Scholar
  2. 2.
    T. Takabatake, Y. Nakazawa, and M. Ishikawa, Jim. J. Appl. Phys. Suppl. 26, 547 (1987).CrossRefGoogle Scholar
  3. M. F. Hundley et al., Physica B 171, 254 (1991).Google Scholar
  4. G. P. Meisner et al., J. Appl. Phys. 57, 3075 (1985).Google Scholar
  5. 5.
    M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 429 (1985).CrossRefGoogle Scholar
  6. N. Bykowetz et al., J. Appl. Phys. 63, 4127 (1988).Google Scholar
  7. Z. Schlesinger et al., Phys. Rev. Lett. 71, 1748 (1993).Google Scholar
  8. 8.
    J. Neuenschwander and P. Wachter, Phys. Rev. B 41, 12693 (1990).CrossRefGoogle Scholar
  9. 9.
    B. Bucher, P. Steiner, and P. Wachter, Phys. Rev. Lett. 67, 2717 (1991).CrossRefGoogle Scholar
  10. 10.
    P. Wachter, A. Jung, and P. Steiner, Phys. Rev. B 51, 5542 (1995).CrossRefGoogle Scholar
  11. 11.
    G. Aeppli and Z. Fisk, Comments Cond. Matt. Phys. 16, 155 (1992).Google Scholar
  12. A. Severing et al., Phys. Rev. B 44, 6832 (1991).Google Scholar
  13. T. Nanba et al., Physica B 186–188, 440 (1993).Google Scholar
  14. 14.
    P. Nyhus, S. L. Cooper, Z. Fisk, and J. Sarrao, Phys. Rev. B 52, 14308 (1995).CrossRefGoogle Scholar
  15. 15.
    B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).CrossRefGoogle Scholar
  16. 16.
    N. B. Brandt and V. V. Moschalkov, Adv. Phys. 33, 373 (1984).CrossRefGoogle Scholar
  17. 17.
    R. Sollie and P. Schlottmann, J. Appl. Phys. 69, 5478 (1991).CrossRefGoogle Scholar
  18. 18.
    R. Sollie and P. Schlottmann, J. Appl. Phys. 70, 5803 (1991).CrossRefGoogle Scholar
  19. 19.
    P. Schlottmann, Phys. Rev. B 46, 998 (1992).CrossRefGoogle Scholar
  20. 20.
    P. Schlottmann, Physica B 186–188, 375 (1993).CrossRefGoogle Scholar
  21. 21.
    P. Schlottmann and C. S. I.Iellberg, J. Appl. Phys. 79, 6414 (1996).CrossRefGoogle Scholar
  22. A. Millis, in Physical Phenomena at High Magnetic Fields,edited by E. Manousakis et al.,(Addison-Wesley, 1992), p.146.Google Scholar
  23. 23.
    P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).CrossRefGoogle Scholar
  24. 24.
    C. Sanchez-Castro, K. S. Bedell, and B. R. Cooper, Phys. Rev. B 47, 6879 (1993).CrossRefGoogle Scholar
  25. 25.
    P. S. Riseborough, Physica B 199–200, 466 (1994).CrossRefGoogle Scholar
  26. 26.
    S. Doniach, C. Fu, and S. A. Trugman, Physica B 199–200, 450 (1994).CrossRefGoogle Scholar
  27. 27.
    J. Karbowski, Phys. Rev. B 54, 728 (1996).CrossRefGoogle Scholar
  28. 28.
    C. M. Varma, Phys. Rev. B 50, 9952 (1994).CrossRefGoogle Scholar
  29. 29.
    K. Ueda, M. Sigrist, H. Tsunetsugu, and T. Nishino, Physica B 194–196, 255 (1994).Google Scholar
  30. 30.
    T. Kasuya, Europhys. Lett. 26, 277 (1994).CrossRefGoogle Scholar
  31. 31.
    J. Pérez-Conde and P. Pfeuty, Physica B 223–224, 438 (1996).CrossRefGoogle Scholar
  32. 32.
    G. Kotliar and A. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).CrossRefGoogle Scholar
  33. 33.
    V. Doria and P. Schlottmann, Phys. Rev. B 46, 10800 (1992).CrossRefGoogle Scholar
  34. 34.
    V. Doria and P. Schlottmann, J. Appl. Phys. 73, 5400 (1993).CrossRefGoogle Scholar
  35. 35.
    V. Doria and P. Schlottmann, Phys. Rev. B 47, 5095 (1993).CrossRefGoogle Scholar
  36. 36.
    P. Schlottmann, Phys. Rev. B 54, 12324 (1996).CrossRefGoogle Scholar
  37. 37.
    S. Doniach and P. Fazekas, Phil. Mag. B 65, 1171 (1992).CrossRefGoogle Scholar
  38. 38.
    P. Schlottmann, Physica B 206–207, 816 (1995).CrossRefGoogle Scholar
  39. 39.
    P. Schlottmann, Physica B 223–224, 435 (1996).CrossRefGoogle Scholar
  40. 40.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)CrossRefGoogle Scholar
  41. W. Metzner, Z. Phys. B 77, 253 (1989)CrossRefGoogle Scholar
  42. E. Müller-Hartmann, ibid. 76, 211 (1989)Google Scholar
  43. H. Schweitzer and G. Czycholl, Solid State Commun. 69, 171 (1989).CrossRefGoogle Scholar
  44. 41.
    D. S. Gaunt and A. J. Guttmann, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green, (Academic Press, London, 1974),VOL. 3 p. 181.Google Scholar
  45. 42.
    D. Stauffer, Introduction to Percolation Theory ( Taylor and Francis, London, 1985 ).CrossRefGoogle Scholar
  46. 43.
    P. J. Reynolds, H. E. Stanley and W. Klein, Phys. Rev. B 21, 1223 (1980).CrossRefGoogle Scholar
  47. 44.
    R. Freytag and J. Keller, Z. Phys. B 80, 241 (1990).CrossRefGoogle Scholar
  48. 45.
    S. Wermbter, K. Sabel and G. Czycholl, Phys. Rev. B 53, 2528 (1996).CrossRefGoogle Scholar
  49. 46.
    P. Schlottmann, J. Appl. Phys. 75, 7044 (1994).CrossRefGoogle Scholar
  50. 47.
    S. E. Barnes, J. Phys. F 6, 1375 (1976); 7, 2637 (1977).Google Scholar
  51. 48.
    P. Coleman, Phys. Rev. B 29, 3035 (1984).CrossRefGoogle Scholar
  52. 49.
    N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983).CrossRefGoogle Scholar
  53. 50.
    C. A. Balseiro, M. Avignon, A. G. Rojo, and B. Alascio, Phys. Rev. Lett. 62, 2624 (1989).CrossRefGoogle Scholar
  54. 51.
    A. Sudbo and A. Houghton, Phys. Rev. B 42, 4105 (1990).CrossRefGoogle Scholar
  55. 52.
    T. Li, P. Wölfle, and P. Hirschfeld, Phys. Rev. B 40, 6817 (1989)CrossRefGoogle Scholar
  56. 53.
    T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 99: 5 (1985).Google Scholar
  57. M. Kasaya et al.,in Valence Fluctuations in Solids,edited by L. M. Falicov, W. Hanke and M. B. Maple (North-Holland, Amsterdam, 1981), p.251.Google Scholar
  58. F. G. Aliev et al., Physica B 163 358 (1990).Google Scholar
  59. S. Nishigori et al., Physica B 186–188, 406 (1993).Google Scholar
  60. 57.
    A. Houghton, N. Read, and H. Won, Phys. Rev. B 35, 5123 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • P. Schlottmann
    • 1
  1. 1.Department of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations