Spectral Properties of Transition Metal Compounds and Metal-Insulator Transition: A Systematic Approach within the Dynamical Mean Field Theory

  • P. Lombardo
  • M. Avignon
  • J. Schmalian
  • K. H. Bennemann

Abstract

Starting from the two-band Hubbard Hamiltonian for transition metal-3d and oxygen-2p states with perovskite geometry and a generalization of the dynamical mean field theory, we investigate some of the important features of a large class of transition metal compounds. We succeed in reproducing the metal to insulator transition using an unified point of view, for the purely Mott-Hubbard transition as well as for the charge transfer transition. The physically interesting intermediate regimen is also investigated, leading to the complete corresponding phase diagram, in which we classified some of these materials.

Keywords

Spectral Weight Mott Insulator Hole Doping Transition Metal Compound High Energy Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Fujimori et al., Phys. Rev. Lett. 69, 1796 (1992); Y. Tokura et al., Phys. Rev. Lett. 70, 2126 (1993); A. Fujimori et al., Phys. Rev. B 46, 9841 (1992).Google Scholar
  2. I. H. Inoue et al., Phys. Rev. Lett. 74, 1796 (1995).Google Scholar
  3. K. Morikawa et al., Phys. Rev. B 52, 13 711 (1995).Google Scholar
  4. 4.
    T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 48, 17006 (1993).CrossRefGoogle Scholar
  5. 5.
    J. Zaanen, G. A. Sawatzky, and J. A. Allen, Phys. Rev. Lett. 55, 418 (1985).CrossRefGoogle Scholar
  6. T. Saitoh, A. E. Bocquet, T. Mizokawa, and A. Fijimori, Phys. Rev. B 52, 7934 (1995);T. Saitoh et al., Phys. Rev. B 51, 13942 (1995); A. E. Bocquet et al., Phys. Rev. B 53, 1161 (1996).Google Scholar
  7. 7.
    A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).CrossRefGoogle Scholar
  8. 8.
    P. Lombardo, J. Schmalian, M. Avignon, and K. H. Bennemann, Phys. Rev. B 54, 5317 (1996).CrossRefGoogle Scholar
  9. 9.
    G. van der Laan, C. Westra, C. Haas, and G. A. Sawatzky, Phys. Rev. B 23, 4369 (1981).CrossRefGoogle Scholar
  10. 10.
    N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).CrossRefGoogle Scholar
  11. 11.
    H. Eskes, M. B. Meinders, and G. A. Sawatzky, Phys. Rev. Lett. 67, 1035 (1991).CrossRefGoogle Scholar
  12. 12.
    C. Noce, J. Phys. Condens. Matter 3, 7819 (1991).CrossRefGoogle Scholar
  13. 13.
    C. Balseiro, M. Avignon, A. Rojo, and B. Alascio, Phys. Rev. Lett. 62, 2624 (1989).CrossRefGoogle Scholar
  14. 14.
    P. Lombardo, J. Schmalian, M. Avignon, and K. H. Bennemann, Physica B (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • P. Lombardo
    • 1
  • M. Avignon
    • 1
  • J. Schmalian
    • 2
  • K. H. Bennemann
    • 2
  1. 1.Laboratorie d’Etude des Propriétés Electroniques des Solides-CNRSUniversité Joseph FourierGrenoble Cedex 9France
  2. 2.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations