Cryocoolers 8 pp 731-741 | Cite as

A Thermal Switch for Use at Liquid Helium Temperature in Space-Borne Cryogenic Systems

  • L. Duband

Abstract

A gas gap heat switch has been developed for use in space borne cryogenic systems. The switch is simple, small and lightweight. Due to the absence of moving parts lifetime and reliability are expected to be very high. Four switches have been manufactured and thermal and vibration tests have been successfully carried out. The lowest resonant frequency is 380 Hz and the switches underwent a random vibration up to 11 G in all directions from 30 to 2000 Hz, and a constant acceleration test at 15 G between 15 and 100 Hz. As an example an “ON” thermal conductance at 4 K of ≈ 35 mW.K−1 was measured and the ON to OFF ratio was found to be of the order of 2700. The switching temperature is around 15 K.

Keywords

Resonant Frequency Vibration Test Cold Plate Classical Regime Copper Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Duband, L. Hui and A. Lange “A Space-borne 3He refrigerator” Cryogenics vol 30, p 263 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    C. Jewell and G. Rouillé “Development of a sub-1 K cryocooling stage” document ESA/ESTEC YCT/963.Cj/if (1992).Google Scholar
  3. 3.
    J. M. L. Engels, F. W. Gorter and A. R. Miedema “Magnetoresistance of gallium — A practical heat switch at liquid helium temperature” Cryogenics vol 12, p 141 (1972).CrossRefGoogle Scholar
  4. 4.
    R. Radebaugh “Electrical and thermal magnetoconductivities of single-crystal beryllium at low temperatures and its use as a heat switch” J. of Low Temp. Physics vol 27, p 91 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    C. V. Heer and J. G. Daunt “Heat flow in metals below 1 K and a new method for magnetic cooling” Phys. Rev. vol 76, p 854 (1949)ADSCrossRefGoogle Scholar
  6. 6.
    W. Reese and W. A. Steyert “Properties of lead thermal switches at low temperatures”, Rev. Sci. Instr. vol 33, p 43 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Mueller, C. Buchal, T. Oversluizen and F. Pobell “Superconducting aluminum heat switch and plated press-contacts for use at ultralow temperatures” Rev. Sci. Instr. vol 49, p 515 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    J. H. Colwell “The performance of a mechanical heat switch at low temperatures” Rev. Sci. Instr. vol 40, p 1182 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    J. D. Siegwarth “A high conductance helium temperature heat switch”, Cryogenics vol 16, p 73(1976).CrossRefGoogle Scholar
  10. 10.
    S. Van Oost, G. Bakaert, R. S. Bhatti, S. Scull and C. Jewell “A heat switch for space cryocooler applications” Proceedings of the 4th European Symposium on Space Environmental and Control Systems, p 209, Florence, Italy, (1991).Google Scholar
  11. 11.
    P. T. Timbie, G. M. Bernstein and P. L. Richards “Development of an adiabatic demagnetization refrigerator for SIRTF” Cryogenics vol 30, p 271 (1990).CrossRefGoogle Scholar
  12. 12.
    J. P. Torre and G. Chanin “Heat switch for liquid-helium temperatures” Rev. Sci. Instr. vol 55, p 213 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    D. J. Frank and T. C. Nast “Getter-activated cryogenic thermal switch” Adv. Cryo. Eng. vol 31, p 933 (1986).CrossRefGoogle Scholar
  14. 14.
    W. E. Gifford, N. Kadaikkal and A. Acharya “Simon helium liquefaction method using a refrigerator and thermal valve” Adv. Cryo. Eng. vol 15, p 422 (1970).Google Scholar
  15. 15.
    P. Roubeau, G. Der Nigohossian and O. Avenel “Adsorption de l’hélium 4 par le charbon actif” Colloque International vide et froid Grenoble, SFITV (1969).Google Scholar
  16. 16.
    R. R. Conte “Eléments de cryogénie” Masson & Cie (1970).Google Scholar
  17. 17.
    R. J. Corrucini “Calculation of gaseous heat conduction in dewars” Adv. Cryo. Eng. vol 3, p353 (1957).Google Scholar
  18. 18.
    R. J. Roark and W. C. Young “Formulas for stress and strain” Mc Gray-Hill international book company (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • L. Duband
    • 1
  1. 1.Département de Recherche Fondamentale sur la Matière Condensée, Service des Basses TempératuresCEAGrenoble Cedex 9France

Personalised recommendations