Advertisement

Electronic Correlations in the 3s Photoelectron Spectra of the Late Transition Metal Oxides

  • Fulvio Parmigiani
  • Luigi Sangaletti
Part of the NATO ASI Series book series (NSSB, volume 345)

Abstract

The X-Ray Photoemission (XP) core level spectra of transition metal (TM) compounds have been intensively investigated with the aim to obtain appropriate parameters to characterise their electronic properties 1–15. In particular, the charge transfer (CT) energy, A, which describes the charge fluctuation from the ligand to the metal according to the mechanism d n d n+1 L and the Mott-Hubbard energy U, which accounts for the electronic charge fluctuation between two transition metal ions in the crystal lattice, \( d_i^nd_j^n \to d_i^{n - 1}d_j^{n + 1} \) are basic concepts to understand the electronic correlations of TM compounds 7–9.

Keywords

Main Line Energy Separation Spectral Weight Core Hole Charge Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kinsinger, R. Zimmermann, S. Hüfner, and P. Steiner, Z.Phys.B — Condensed Matter 89: 21 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    P.S. Bagus, G. Pacchioni, and F. Parmigiani, Chem.Phys.Lett. 207: 569 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    C.S. Fadley and D.A. Shirley, Phys.Rev. A2: 1109 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    P.S. Bagus, A.J. Freeman, and F. Sasaki, Phys.Rev.Lett. 30: 850 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    E.-K. Viinikkaand Y. Öhrn, Phys.Rev. Bl 1: 4168 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    B.W. Veal and A.P. Paulikas, Phys.Rev.Lett. 51: 1995 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    J. Zaanen, C. Westra, and G.A. Sawatzky, Phys.Rev. B33: 8060 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    G. Lee and S.-J. Oh, Phys.Rev. B43: 14674 (1991).CrossRefGoogle Scholar
  9. 9.
    J. Park, S. Ryu, Moon-sup Han, and S.-J. Oh, Phys.Rev. B37: 10867 (1988).CrossRefGoogle Scholar
  10. 10.
    J. Zaanen and G. A. Sawatzky, J. of Solid State Chem. 88: 8 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    K. Okada and A. Kotani, J. of the Phys.Soc.of Japan 60: 772 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    K. Okada and A. Kotani, J.of the Phys.Soc.of Jap. 61: 449 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    F. Parmigiani and L. Sangaletti, J. Electron Spectrosc. Relat. Phenom. 66: 223 (1994).CrossRefGoogle Scholar
  14. 14.
    M.A. van Veenendaal and G.A. Sawatzky, Phys. Rev. Lett. 70: 2459 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Fadley, Basic concepts of X-ray photoelectron spectroscopy, in “Electron Spectroscopy: theory, techniques and applications (Vol.2)”, C.R. Brundle and A.D. Baker, eds., Academic Press, New York (1978).Google Scholar
  16. 16.
    F. Parmigiani and L. Sangaletti, Chem.Phys.Lett. 213: 613 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Shirley, Many-electron and final state effects: beyond the one-electron picture, in “Photoemission in solids I — General Principles”, M. Cardona and L. Ley, eds., Springer Verlag, Berlin (1978).Google Scholar
  18. 18.
    P.S. Bagus, F. Parmigiani and L. Sangaletti, to be published.Google Scholar
  19. 19.
    P.S. Bagus, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Fulvio Parmigiani
    • 1
  • Luigi Sangaletti
    • 2
  1. 1.Materials DivisionC.I.S.E. Tecnologie Innovative S.p.A.MilanoItaly
  2. 2.Dipartimento di Fisica A.VoltaUniversità di PaviaPaviaItaly

Personalised recommendations