Constraints in the Application of Control Analysis to the Study of Metabolism in Hepatocytes

  • Michael N. Berry
  • Roland B. Gregory
  • Anthony R. Grivell
  • Debra C. Henly
  • John W. Phillips
  • Patricia G. Wallace
  • G. Rickey Welch
Chapter
Part of the NATO ASI Series book series (NSSA, volume 190)

Abstract

In recent years it has been argued that quantitative methods are essential for providing new insights into the nature of the living state (Kacser, 1983). A number of mathematical approaches have evolved to meet these demands for quantitative methodologies (Heinrich & Rapoport, 1974; Savageau, 1976; Kacser & Burns, 1979), and of these, control analysis has perhaps attracted the greatest attention. Although its advent has been greeted enthusiastically by many theorists, who see it as an ideal way to quantify the regulatory role of the enzymes of a metabolic pathway, but this analytical method has not yet been widely embraced by experimentalists, because of the difficulties encountered in applying it to complex cellular systems. The work that we shall report in this chapter will illustrate some of these difficulties. The cell system we have used for our studies is the isolated hepatocyte preparation, and we shall present some representative examples from the many hundreds of experiments we have performed in this area.

Keywords

Control Analysis NADH Dehydrogenase Glycolytic Flux Lactate Accumulation Adenine Nucleotide Translocase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, M. N. Friend, D.S. (1969) J. Cell Biol. 43, 506–520PubMedCrossRefGoogle Scholar
  2. Berry, M. N., Clark, D. G., Grivell, A. R. Wallace, P. G. (1983) Eur. J. Biochem. 131, 205–214PubMedCrossRefGoogle Scholar
  3. Berry, M. N., Gregory, R. B., Grivell, A. R., Henly, D. C., Phillips, J. W., Wallace, P. G. Welch, G. R. (1987) FEBS Lett. 224, 201–207PubMedCrossRefGoogle Scholar
  4. Berry, M. N., Gregory, R. B., Grivell, A. R., Henly, D. C., Nobes, C. D., Phillips, J. W. Wallace, P. G. (1988a) Biochem. Biophys. Acta 936, 294–306Google Scholar
  5. Berry, M. N., Gregory, R. B., Grivell, A. R., Henly, D. C., Phillips, J. W., Wallace, P. G. Welch, G. R. (1988b) FEBS Leu. 231, 19–24CrossRefGoogle Scholar
  6. Bücher, T. (1955) Methods Enzymol. 1, 427–435CrossRefGoogle Scholar
  7. Bontemps, F., Hue, L. Hers, H.-G. (1978) Biochem. J. 174, 603–611PubMedGoogle Scholar
  8. DiTullio, N. W., Berkoff, C. E., Blank, B., Kostos, V., Stack, E. J. Saunders, H. L. (1974) BiochemJ. 138, 387–394Google Scholar
  9. Duszynski, J., Groen, A. K., Wanders, R. J. A., Vervoorn, R. C. Tager, J. M. (1982) FEBS Leu. 146, 116–119CrossRefGoogle Scholar
  10. Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R. Tager, J. M. (1982) J. Biol. Chem. 257, 2754–2757Google Scholar
  11. Heinrich, R. Rapoport, T. A. (1974) Eur. J. Biochem. 42, 97–105PubMedCrossRefGoogle Scholar
  12. Kacser, H., Sauro, H. M. Acerenza, L. (1990) Eur. J. Biochem. in pressGoogle Scholar
  13. Kacser, H. Burns, J. A. (1979) Biochem. Soc. Trans. 7, 1149–1160Google Scholar
  14. Kacser, H. (1983) Biochem. Soc. Trans. 11, 35–40Google Scholar
  15. Kell, D. B. (1986) Meth. Enzymol. 127, 538–557PubMedCrossRefGoogle Scholar
  16. Krebs, H. A., Kornberg, H. L. (1957) Ergebn. Physiol. 49, 212–298PubMedCrossRefGoogle Scholar
  17. Kurganov, B. I., (1985) in Organized Multienzyme Systems: Catalytic Properties (Welch, G. R., ed.), pp. 241–270, Academic Press, New YorkCrossRefGoogle Scholar
  18. Masters, C. J. (1981) CRC Crit. Rev. Biochem. 11, 105–143Google Scholar
  19. Meijer, A. F., Gimpel, J. A., Deleeuw, G., Tischler, M. E., Tager, J. M. Williamson, J. R. (1978) J. Biol. Chem. 253, 2308Google Scholar
  20. Pryor, H. J., Smyth, J. E., Quinlan, P. T. Halestrap, A. P. (1987) Biochem. J. 247, 449–457PubMedGoogle Scholar
  21. Savageau, M. A. (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular BiologyAddison-Wesley, Reading, MassachusettsGoogle Scholar
  22. Tsong, T. Y., Liu, D-S., Chauvin, F. Astumian, R. D. (1989) Biosci. Rep. 9, 13–26PubMedCrossRefGoogle Scholar
  23. Welch, G. R. Clegg, J. S. (eds.) (1986) The Organization of Cell Metabolism, Plenum Press, New YorkGoogle Scholar
  24. Welch, G. R., Keleti, T. Vértessy, B. (1988) J. Theor. Biol. 130, 407–422PubMedCrossRefGoogle Scholar
  25. Welch, G. R. Keleti, T. (1989) in Structural and Organizational Aspects of Metabolic Regulation (Srere, P., Jones, M. E. Mathews, C., eds.) Alan R.Liss, New YorkGoogle Scholar
  26. Westerhoff, H. V. Kell, D. B. (1988) Comments Mol. Cell. Biophys. 5, 57–107Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michael N. Berry
    • 1
  • Roland B. Gregory
    • 1
  • Anthony R. Grivell
    • 1
  • Debra C. Henly
    • 1
  • John W. Phillips
    • 1
  • Patricia G. Wallace
    • 1
  • G. Rickey Welch
    • 2
  1. 1.Department of Medical Biochemistry, School of MedicineThe Flinders University of South AustraliaSouth AustraliaAustralia
  2. 2.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA

Personalised recommendations